5.3 Specifying Model Settings
Understand how to configure data mining models at build time.
Numerous configuration settings are available for configuring data mining models at build time. To specify settings, create a settings table with the columns shown in the following table and pass the table to CREATE_MODEL
.
Table 5-4 Settings Table Required Columns
Column Name | Data Type |
---|---|
|
|
|
|
Example 5-1 creates a settings table for an Support Vector Machine (SVM) Classification model. Since SVM is not the default classifier, the ALGO_NAME
setting is used to specify the algorithm. Setting the SVMS_KERNEL_FUNCTION
to SVMS_LINEAR
causes the model to be built with a linear kernel. If you do not specify the kernel function, the algorithm chooses the kernel based on the number of attributes in the data.
Some settings apply generally to the model, others are specific to an algorithm. Model settings are referenced in Table 5-5 and Table 5-6.
Table 5-5 General Model Settings
Settings | Description |
---|---|
Mining function settings |
See "Mining Function Settings" in Oracle Database PL/SQL Packages and Types Reference |
Algorithm names |
See "Algorithm Names" in Oracle Database PL/SQL Packages and Types Reference |
Global model characteristics |
See "Global Settings" in Oracle Database PL/SQL Packages and Types Reference |
Automatic Data Preparation |
See "Automatic Data Preparation" in Oracle Database PL/SQL Packages and Types Reference |
Table 5-6 Algorithm-Specific Model Settings
Algorithm | Description |
---|---|
CUR Matrix Decomposition |
See "DBMS_DATA_MINING —Algorithm Settings: CUR Matrix Decomposition"in Oracle Database PL/SQL Packages and Types Reference |
Decision Tree |
See "DBMS_DATA_MINING —Algorithm Settings: Decision Tree" in Oracle Database PL/SQL Packages and Types Reference |
Expectation Maximization |
See "DBMS_DATA_MINING —Algorithm Settings: Expectation Maximization" in Oracle Database PL/SQL Packages and Types Reference |
Explicit Semantic Analysis |
See “DBMS_DATA_MINING —Algorithm Settings: Explicit Semantic Analysis” in Oracle Database PL/SQL Packages and Types Reference |
Exponential Smoothing |
See "DBMS_DATA_MINING —Algorithm Settings: Exponential Smoothing Models" in Oracle Database PL/SQL Packages and Types Reference |
Generalized Linear Models |
See "DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models" in Oracle Database PL/SQL Packages and Types Reference |
k-Means |
See "DBMS_DATA_MINING —Algorithm Settings: k-Means" in Oracle Database PL/SQL Packages and Types Reference |
Naive Bayes |
See "Algorithm Settings: Naive Bayes" in Oracle Database PL/SQL Packages and Types Reference |
Neural Network |
See "DBMS_DATA_MINING —Algorithm Settings: Neural Network" in Oracle Database PL/SQL Packages and Types Reference |
Non-Negative Matrix Factorization |
See "DBMS_DATA_MINING —Algorithm Settings: Non-Negative Matrix Factorization" in Oracle Database PL/SQL Packages and Types Reference |
O-Cluster |
See "Algorithm Settings: O-Cluster" in Oracle Database PL/SQL Packages and Types Reference |
Random Forest |
See "DBMS_DATA_MINING — Algorithm Settings: Random Forest" in Oracle Database PL/SQL Packages and Types Reference |
Singular Value Decomposition |
See "DBMS_DATA_MINING —Algorithm Settings: Singular Value Decomposition" in Oracle Database PL/SQL Packages and Types Reference |
Support Vector Machine |
See "DBMS_DATA_MINING —Algorithm Settings: Support Vector Machine" in Oracle Database PL/SQL Packages and Types Reference |
Example 5-1 Creating a Settings Table for an SVM Classification Model
CREATE TABLE svmc_sh_sample_settings ( setting_name VARCHAR2(30), setting_value VARCHAR2(4000)); BEGIN INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines); INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear); COMMIT; END; /
Related Topics
5.3.1 Specifying Costs
Specify a cost matrix table to build a Decision Tree model.
The CLAS_COST_TABLE_NAME
setting specifies the name of a cost matrix table to be used in building a Decision Tree model. A cost matrix biases a classification model to minimize costly misclassifications. The cost matrix table must have the columns shown in the following table:
Table 5-7 Cost Matrix Table Required Columns
Column Name | Data Type |
---|---|
|
valid target data type |
|
valid target data type |
|
|
Decision Tree is the only algorithm that supports a cost matrix at build time. However, you can create a cost matrix and associate it with any classification model for scoring.
If you want to use costs for scoring, create a table with the columns shown in Table 5-7, and use the DBMS_DATA_MINING.ADD_COST_MATRIX
procedure to add the cost matrix table to the model. You can also specify a cost matrix inline when invoking a PREDICTION
function. Table 3-1 has details for valid target data types.
Related Topics
5.3.2 Specifying Prior Probabilities
Prior probabilities can be used to offset differences in distribution between the build data and the actual population.
The CLAS_PRIORS_TABLE_NAME
setting specifies the name of a table of prior probabilities to be used in building a Naive Bayes model. The priors table must have the columns shown in the following table.
Table 5-8 Priors Table Required Columns
Column Name | Data Type |
---|---|
|
valid target data type |
|
|
Related Topics
5.3.3 Specifying Class Weights
Specify class weights table settings in Logistic Regression or Support Vector Machine (SVM) Classification to favour higher weighted classes.
The CLAS_WEIGHTS_TABLE_NAME
setting specifies the name of a table of class weights to be used to bias a logistic regression (Generalized Linear Model Classification) or SVM Classification model to favor higher weighted classes. The weights table must have the columns shown in the following table.
Table 5-9 Class Weights Table Required Columns
Column Name | Data Type |
---|---|
|
valid target data type |
|
|
Related Topics
5.3.4 Model Settings in the Data Dictionary
Explains about ALL/USER/DBA_MINING_MODEL_SETTINGS
in data dictionary view.
Information about mining model settings can be obtained from the data dictionary view ALL/USER/DBA_MINING_MODEL_SETTINGS
. When used with the ALL
prefix, this view returns information about the settings for the models accessible to the current user. When used with the USER
prefix, it returns information about the settings for the models in the user's schema. The DBA
prefix is only available for DBAs.
The columns of ALL_MINING_MODEL_SETTINGS
are described as follows and explained in the following table.
SQL> describe all_mining_model_settings Name Null? Type ----------------------------------------- -------- ---------------------------- OWNER NOT NULL VARCHAR2(30) MODEL_NAME NOT NULL VARCHAR2(30) SETTING_NAME NOT NULL VARCHAR2(30) SETTING_VALUE VARCHAR2(4000) SETTING_TYPE VARCHAR2(7)
Table 5-10 ALL_MINING_MODEL_SETTINGS
Column | Description |
---|---|
|
Owner of the mining model. |
|
Name of the mining model. |
|
Name of the setting. |
|
Value of the setting. |
|
|
The following query lists the settings for the Support Vector Machine (SVM) Classification model SVMC_SH_CLAS_SAMPLE
. The ALGO_NAME
, CLAS_WEIGHTS_TABLE_NAME
, and SVMS_KERNEL_FUNCTION
settings are user-specified. These settings have been specified in a settings table for the model.
Example 5-2 ALL_MINING_MODEL_SETTINGS
SQL> COLUMN setting_value FORMAT A35 SQL> SELECT setting_name, setting_value, setting_type FROM all_mining_model_settings WHERE model_name in 'SVMC_SH_CLAS_SAMPLE'; SETTING_NAME SETTING_VALUE SETTING ------------------------------ ----------------------------------- ------- SVMS_ACTIVE_LEARNING SVMS_AL_ENABLE DEFAULT PREP_AUTO OFF DEFAULT SVMS_COMPLEXITY_FACTOR 0.244212 DEFAULT SVMS_KERNEL_FUNCTION SVMS_LINEAR INPUT CLAS_WEIGHTS_TABLE_NAME svmc_sh_sample_class_wt INPUT SVMS_CONV_TOLERANCE .001 DEFAULT ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT
Related Topics
5.3.5 Specifying Mining Model Settings for R Model
The mining model settings for R model determine the characteristics of the model. You can specify the mining model settings in the mining_model_table
.
ODMS_PARTITION_COLUMNS
and ODMS_SAMPLING
. The following settings are exclusive to R mining model, and they allow you to specify the R Mining model:
Related Topics
5.3.5.1 ALGO_EXTENSIBLE_LANG
Use the ALGO_EXTENSIBLE_LANG
setting to specify the Oracle Data Mining framework with extensible algorithms.
Currently, R
is the only valid value for ALGO_EXTENSIBLE_LANG
. When the value for ALGO_EXTENSIBLE_LANG
is set to R, the mining models are built using the R language. You can use the following settings in the model_setting_table
to specify the build, score, and view of the R model.
Related Topics
5.3.5.2 RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION
to specify the name of an existing registered R script for R algorithm mining model build.
RALG_BUILD_FUNCTION
and ALGO_EXTENSIBLE_LANG
in the model_setting_table
. The R script defines an R function that has the first input argument of data.frame
for training data, and it returns an R model object. The first data argument is mandatory. The RALG_BUILD_FUNCTION
can accept additional model build parameters.
Note:
The valid inputs for input parameters are numeric and string scalar data types.Example 5-3 Example of RALG_BUILD_FUNCTION
This example shows how to specify the name of the R script MY_LM_BUILD_SCRIPT
that is used to build the model in the model_setting_table.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_function,'MY_LM_BUILD_SCRIPT');
End;
/
The R script MY_LM_BUILD_SCRIPT
defines an R function that builds the LM model. You must register the script MY_LM_BUILD_SCRIPT
in the R script repository which uses the existing ORE security restrictions. You can use Oracle R Enterprise API sys.rqScriptCreate
to register the script. Oracle R Enterprise requires the RQADMIN
role to register R scripts.
For example:
Begin
sys.rqScriptCreate('MY_LM_BUILD_SCRIPT', 'function(data, formula, model.frame) {lm(formula = formula, data=data, model = as.logical(model.frame)}');
End;
/
For Clustering and Feature Extraction mining function model build, the R attributes dm$nclus
and dm$nfeat
must be set on the return R model to indicate the number of clusters and features respectively.
The R script MY_KM_BUILD_SCRIPT
defines an R function that builds the k-Means model for Clustering. R attribute dm$nclus
is set with the number of clusters for the return Clustering model.
'function(dat) {dat.scaled <- scale(dat)
set.seed(6543); mod <- list()
fit <- kmeans(dat.scaled, centers = 3L)
mod[[1L]] <- fit
mod[[2L]] <- attr(dat.scaled, "scaled:center")
mod[[3L]] <- attr(dat.scaled, "scaled:scale")
attr(mod, "dm$nclus") <- nrow(fit$centers)
mod}'
The R script MY_PCA_BUILD_SCRIPT
defines an R function that builds the PCA model. R attribute dm$nfeat
is set with the number of features for the return feature extraction model.
'function(dat) {
mod <- prcomp(dat, retx = FALSE)
attr(mod, "dm$nfeat") <- ncol(mod$rotation)
mod}'
Related Topics
5.3.5.2.1 RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION
input parameter specifies a list of numeric and string scalar values in SQL SELECT
query statement format.
Example 5-4 Example of RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION
input parameters must be a list of numeric and string scalar values. The input parameters are optional.
'SELECT value parameter name ...FROM dual'
'formula'
and a numeric value zero for input argument 'model.frame'
using the RALG_BUILD_PARAMETER
. These input arguments must match with the function signature of the R script used in RALG_BUILD_FUNCTION
Parameter. Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_parameter, 'select ''AGE ~ .'' as "formula", 0 as "model.frame" from dual');
End;
/
Related Topics
5.3.5.3 RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION
specifies the R model metadata that is returned in the data.frame.
Use the RALG_DETAILS_FUNCTION
to specify an existing registered R script that generates model information. The specified R script defines an R function that contains the first input argument for the R model object. The output of the R function must be a data.frame
. The columns of the data.frame
are defined by RALG_DETAILS_FORMAT
, and can contain only numeric or string scalar types.
Example 5-5 Example of RALG_DETAILS_FUNCTION
MY_LM_DETAILS_SCRIPT
in the model_setting_table
. This script defines the R function that is used to provide the model information. Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_function, 'MY_LM_DETAILS_SCRIPT');
End;
/
MY_LM_DETAILS_SCRIPT
is registered as: 'function(mod) data.frame(name=names(mod$coefficients),
coef=mod$coefficients)'
Related Topics
5.3.5.3.1 RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT
parameter to specify the names and column types in the model view. It is a string that contains a SELECT
query to specify a list of numeric and string scalar data types for the name and type of the model view columns.
When RALG_DETAILS_FORMAT
and RALG_DETAILS_FUNCTION
are both specified, a model view by the name DM$VD
<model_name>
is created along with an R model in the current schema. The first column of the model view is PARTITION_NAME
. It has NULL value for non-partitioned models. The other columns of the model view are defined by RALG_DETATLS_FORMAT.
Example 5-6 Example of RALG_DETAILS_FORMAT
varchar2
column attr_name
and number column coef_value
after the first column partition_name.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_format, 'select cast(''a'' as varchar2(20)) as attr_name, 0 as coef_value from dual');
End;
/
Related Topics
5.3.5.4 RALG_SCORE_FUNCTION
Use the RALG_SCORE_FUNCTION
to specify an existing registered R script for R algorithm mining model score in the mining_model_table.
The specified R script defines an R function. The first input argument defines the model object. The second input argument defines the data.frame
that is used for scoring data.
Example 5-7 Example of RALG_SCORE_FUNCTION
data.frame.
The argument object is the R Linear Model. The argument newdata
contains scoring data in the data.frame.
function(object, newdata) {res <- predict.lm(object, newdata = newdata, se.fit = TRUE); data.frame(fit=res$fit, se=res$se.fit, df=summary(object)$df[1L])}
In this example,
-
object
indicates the LM model -
newdata
indicates the scoring data.frame
The output of the specified R function must be a data.frame
. Each row represents the prediction for the corresponding scoring data from the input data.frame
. The columns of the data.frame
are specific to mining functions, such as:
Regression: A single numeric column for predicted target value, with two optional columns containing standard error of model fit, and the degrees of freedom number. The optional columns are needed for query function PREDICTION_BOUNDS
to work.
Example 5-8 Example of RALG_SCORE_FUNCTION for Regression
This example shows how to specify the name of the R script MY_LM_PREDICT_SCRIPT
that is used to score the model in the model_setting_table.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LM_PREDICT_SCRIPT');
End;
/
MY_LM_PREDICT_SCRIPT
is registered as: function(object, newdata) {data.frame(pre = predict(object, newdata = newdata))}
Classification: Each column represents the predicted probability of one target class. The column name is the target class name.
Example 5-9 Example of RALG_SCORE_FUNCTION for Classification
This example shows how to specify the name of the R script MY_LOGITGLM_PREDICT_SCRIPT
that is used to score the logit Classification model in the model_setting_table.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LOGITGLM_PREDICT_SCRIPT');
End;
/
MY_LOGITGLM_PREDICT_SCRIPT
is registered as follows. It is a logit Classification with two target class "0" and "1".'function(object, newdata) {
pred <- predict(object, newdata = newdata, type="response");
res <- data.frame(1-pred, pred);
names(res) <- c("0", "1");
res}'
Clustering: Each column represents the predicted probability of one cluster. The columns are arranged in order of cluster ID. Each cluster is assigned a cluster ID, and they are consecutive values starting from 1. To support CLUSTER_DISTANCE
in the R model, the output of R score function returns extra column containing the value of the distance to each cluster in order of cluster ID after the columns for the predicted probability.
Example 5-10 Example of RALG_SCORE_FUNCTION for Clustering
This example shows how to specify the name of the R script MY_CLUSTER_PREDICT_SCRIPT
that is used to score the model in the model_setting_table.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_CLUSTER_PREDICT_SCRIPT');
End;
/
MY_CLUSTER_PREDICT_SCRIPT
is registered as:'function(object, dat){
mod <- object[[1L]]; ce <- object[[2L]]; sc <- object[[3L]];
newdata = scale(dat, center = ce, scale = sc);
centers <- mod$centers;
ss <- sapply(as.data.frame(t(centers)),
function(v) rowSums(scale(newdata, center=v, scale=FALSE)^2));
if (!is.matrix(ss)) ss <- matrix(ss, ncol=length(ss));
disp <- -1 / (2* mod$tot.withinss/length(mod$cluster));
distr <- exp(disp*ss);
prob <- distr / rowSums(distr);
as.data.frame(cbind(prob, sqrt(ss)))}'
Feature Extraction: Each column represents the coefficient value of one feature. The columns are arranged in order of feature ID. Each feature is assigned a feature ID, and they are consecutive values starting from 1.
Example 5-11 Example of RALG_SCORE_FUNCTION for Feature Extraction
This example shows how to specify the name of the R script MY_FEATURE_EXTRACTION_SCRIPT
that is used to score the model in the model_setting_table.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_FEATURE_EXTRACTION_SCRIPT');
End;
/
MY_FEATURE_EXTRACTION_SCRIPT
is registered as: 'function(object, dat) { as.data.frame(predict(object, dat)) }'
The function fetches the centers of the features from the R model, and computes the feature coefficient based on the distance of the score data to the corresponding feature center.
Related Topics
5.3.5.5 RALG_WEIGHT_FUNCTION
Use the RALG_WEIGHT_FUNCTION
to specify the name of an existing registered R script that computes weight or contribution for each attribute in scoring. The specified R script is used in the query function PREDICTION_DETAILS
to evaluate attribute contribution.
The specified R script defines an R function containing the first input argument for model object, and the second input argument of data.frame
for scoring data. When the mining function is Classification, Clustering, or Feature Extraction, the target class name or cluster ID or feature ID is passed by the third input argument to compute the weight for that particular class or cluster or feature. The script returns a data.frame
containing the contributing weight for each attribute in a row. Each row corresponds to that input scoring data.frame.
Example 5-12 Example of RALG_WEIGHT_FUNCTION
MY_PREDICT_WEIGHT_SCRIPT
that computes weight or contribution of R model attributes in the model_setting_table.
Begin
insert into model_setting_table values
(dbms_data_mining.ralg_weight_function, 'MY_PREDICT_WEIGHT_SCRIPT');
End;
/
MY_PREDICT_WEIGHT_SCRIPT
for Regression is registered as:'function(mod, data) { coef(mod)[-1L]*data }'
MY_PREDICT_WEIGHT_SCRIPT
for logit Classification is registered as:'function(mod, dat, clas) {
v <- predict(mod, newdata=dat, type = "response");
v0 <- data.frame(v, 1-v); names(v0) <- c("0", "1");
res <- data.frame(lapply(seq_along(dat),
function(x, dat) {
if(is.numeric(dat[[x]])) dat[,x] <- as.numeric(0)
else dat[,x] <- as.factor(NA);
vv <- predict(mod, newdata = dat, type = "response");
vv = data.frame(vv, 1-vv); names(vv) <- c("0", "1");
v0[[clas]] / vv[[clas]]}, dat = dat));
names(res) <- names(dat);
res}'
Related Topics
5.3.5.6 Registered R Scripts
The RALG_*_FUNCTION
must specify R scripts that exist in the R script repository. You can register the R scripts using Oracle R Enterprise.
The RALG_*_FUNCTION
includes the following functions:
-
RALG_BUILD_FUNCTION
-
RALG_DETAILS_FUNCTION
-
RALG_SCORE_FUNCTION
-
RALG_WEIGHT_FUNCTION
Note:
The R scripts must exist in the R script repository for an R model to function.You can register the R scripts through Oracle Enterprise R (ORE). To register R scripts, you must have the RQADMIN
role. After an R model is built, the names of these specified R scripts become model settings. These R scripts must exist in the R script repository for an R model to remain functional.
You can manage the R memory that is used to build, score, and view the R models through Oracle Enterprise R as well.
5.3.5.7 R Model Demonstration Scripts
You can access R model demonstration scripts under rdbms/demo
dmraidemo.sql dmrglmdemo.sql dmrpcademo.sql
dmrardemo.sql dmrkmdemo.sql dmrrfdemo.sql
dmrdtdemo.sql dmrnndemo.sql
5.3.5.8 Algorithm Meta Data Registration
Algorithm Meta Data Registration allows for a uniform and consistent approach of registering new algorithm functions and their settings.
User have the ability to add new algorithms through the registration process. The new algorithms can appear as available within Oracle Data Mining R within their appropriate mining functions. Based on the registration meta data, the settings page is dynamically rendered. Algorithm meta data registration extends the mining model capability of Oracle Data Mining.