NAME | SYNOPSIS | DESCRIPTION | VERSIONS | ATTRIBUTES | CONFORMING TO | EXAMPLE | SEE ALSO | COLOPHON |
CATANH(3) Linux Programmer's Manual CATANH(3)
catanh, catanhf, catanhl - complex arc tangents hyperbolic
#include <complex.h> double complex catanh(double complex z); float complex catanhf(float complex z); long double complex catanhl(long double complex z); Link with -lm.
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2]. One has: catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
These functions first appeared in glibc in version 2.1.
For an explanation of the terms used in this section, see attributes(7). ┌───────────────────────────────┬───────────────┬─────────┐ │Interface │ Attribute │ Value │ ├───────────────────────────────┼───────────────┼─────────┤ │catanh(), catanhf(), catanhl() │ Thread safety │ MT-Safe │ └───────────────────────────────┴───────────────┴─────────┘
C99, POSIX.1-2001, POSIX.1-2008.
/* Link with "-lm" */ #include <complex.h> #include <stdlib.h> #include <unistd.h> #include <stdio.h> int main(int argc, char *argv[]) { double complex z, c, f; if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); } z = atof(argv[1]) + atof(argv[2]) * I; c = catanh(z); printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c)); f = 0.5 * (clog(1 + z) - clog(1 - z)); printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2)); exit(EXIT_SUCCESS); }
atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)
This page is part of release 4.12 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.
2015-04-19 CATANH(3)
Pages that refer to this page: atanh(3), ctanh(3), complex(7)