NAME | SYNOPSIS | DESCRIPTION | VERSIONS | ATTRIBUTES | CONFORMING TO | EXAMPLE | SEE ALSO | COLOPHON |
CATAN(3) Linux Programmer's Manual CATAN(3)
catan, catanf, catanl - complex arc tangents
#include <complex.h> double complex catan(double complex z); float complex catanf(float complex z); long double complex catanl(long double complex z); Link with -lm.
These functions calculate the complex arc tangent of z. If y = catan(z), then z = ctan(y). The real part of y is chosen in the interval [-pi/2,pi/2]. One has: catan(z) = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i)
These functions first appeared in glibc in version 2.1.
For an explanation of the terms used in this section, see attributes(7). ┌────────────────────────────┬───────────────┬─────────┐ │Interface │ Attribute │ Value │ ├────────────────────────────┼───────────────┼─────────┤ │catan(), catanf(), catanl() │ Thread safety │ MT-Safe │ └────────────────────────────┴───────────────┴─────────┘
C99, POSIX.1-2001, POSIX.1-2008.
/* Link with "-lm" */ #include <complex.h> #include <stdlib.h> #include <unistd.h> #include <stdio.h> int main(int argc, char *argv[]) { double complex z, c, f; double complex i = I; if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); } z = atof(argv[1]) + atof(argv[2]) * I; c = catan(z); printf("catan() = %6.3f %6.3f*i\n", creal(c), cimag(c)); f = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i); printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2)); exit(EXIT_SUCCESS); }
ccos(3), clog(3), ctan(3), complex(7)
This page is part of release 4.12 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.
2015-04-19 CATAN(3)
Pages that refer to this page: atan(3), ctan(3), complex(7)