|
NAME | SYNOPSIS | DESCRIPTION | OPTIONS | SEE ALSO | COPYRIGHT | COLOPHON |
GCOV(1) GNU GCOV(1)
gcov - coverage testing tool
gcov [-v|--version] [-h|--help]
[-a|--all-blocks]
[-b|--branch-probabilities]
[-c|--branch-counts]
[-d|--display-progress]
[-f|--function-summaries]
[-i|--intermediate-format]
[-l|--long-file-names]
[-m|--demangled-names]
[-n|--no-output]
[-o|--object-directory directory|file]
[-p|--preserve-paths]
[-r|--relative-only]
[-s|--source-prefix directory]
[-u|--unconditional-branches]
[-x|--hash-filenames]
files
gcov is a test coverage program. Use it in concert with GCC to
analyze your programs to help create more efficient, faster running
code and to discover untested parts of your program. You can use
gcov as a profiling tool to help discover where your optimization
efforts will best affect your code. You can also use gcov along with
the other profiling tool, gprof, to assess which parts of your code
use the greatest amount of computing time.
Profiling tools help you analyze your code's performance. Using a
profiler such as gcov or gprof, you can find out some basic
performance statistics, such as:
* how often each line of code executes
* what lines of code are actually executed
* how much computing time each section of code uses
Once you know these things about how your code works when compiled,
you can look at each module to see which modules should be optimized.
gcov helps you determine where to work on optimization.
Software developers also use coverage testing in concert with
testsuites, to make sure software is actually good enough for a
release. Testsuites can verify that a program works as expected; a
coverage program tests to see how much of the program is exercised by
the testsuite. Developers can then determine what kinds of test
cases need to be added to the testsuites to create both better
testing and a better final product.
You should compile your code without optimization if you plan to use
gcov because the optimization, by combining some lines of code into
one function, may not give you as much information as you need to
look for `hot spots' where the code is using a great deal of computer
time. Likewise, because gcov accumulates statistics by line (at the
lowest resolution), it works best with a programming style that
places only one statement on each line. If you use complicated
macros that expand to loops or to other control structures, the
statistics are less helpful---they only report on the line where the
macro call appears. If your complex macros behave like functions,
you can replace them with inline functions to solve this problem.
gcov creates a logfile called sourcefile.gcov which indicates how
many times each line of a source file sourcefile.c has executed. You
can use these logfiles along with gprof to aid in fine-tuning the
performance of your programs. gprof gives timing information you can
use along with the information you get from gcov.
gcov works only on code compiled with GCC. It is not compatible with
any other profiling or test coverage mechanism.
-h
--help
Display help about using gcov (on the standard output), and exit
without doing any further processing.
-v
--version
Display the gcov version number (on the standard output), and
exit without doing any further processing.
-a
--all-blocks
Write individual execution counts for every basic block.
Normally gcov outputs execution counts only for the main blocks
of a line. With this option you can determine if blocks within a
single line are not being executed.
-b
--branch-probabilities
Write branch frequencies to the output file, and write branch
summary info to the standard output. This option allows you to
see how often each branch in your program was taken.
Unconditional branches will not be shown, unless the -u option is
given.
-c
--branch-counts
Write branch frequencies as the number of branches taken, rather
than the percentage of branches taken.
-n
--no-output
Do not create the gcov output file.
-l
--long-file-names
Create long file names for included source files. For example,
if the header file x.h contains code, and was included in the
file a.c, then running gcov on the file a.c will produce an
output file called a.c##x.h.gcov instead of x.h.gcov. This can
be useful if x.h is included in multiple source files and you
want to see the individual contributions. If you use the -p
option, both the including and included file names will be
complete path names.
-p
--preserve-paths
Preserve complete path information in the names of generated
.gcov files. Without this option, just the filename component is
used. With this option, all directories are used, with /
characters translated to # characters, . directory components
removed and unremoveable .. components renamed to ^. This is
useful if sourcefiles are in several different directories.
-r
--relative-only
Only output information about source files with a relative
pathname (after source prefix elision). Absolute paths are
usually system header files and coverage of any inline functions
therein is normally uninteresting.
-f
--function-summaries
Output summaries for each function in addition to the file level
summary.
-o directory|file
--object-directory directory
--object-file file
Specify either the directory containing the gcov data files, or
the object path name. The .gcno, and .gcda data files are
searched for using this option. If a directory is specified, the
data files are in that directory and named after the input file
name, without its extension. If a file is specified here, the
data files are named after that file, without its extension.
-s directory
--source-prefix directory
A prefix for source file names to remove when generating the
output coverage files. This option is useful when building in a
separate directory, and the pathname to the source directory is
not wanted when determining the output file names. Note that
this prefix detection is applied before determining whether the
source file is absolute.
-u
--unconditional-branches
When branch probabilities are given, include those of
unconditional branches. Unconditional branches are normally not
interesting.
-d
--display-progress
Display the progress on the standard output.
-i
--intermediate-format
Output gcov file in an easy-to-parse intermediate text format
that can be used by lcov or other tools. The output is a single
.gcov file per .gcda file. No source code is required.
The format of the intermediate .gcov file is plain text with one
entry per line
file:<source_file_name>
function:<line_number>,<execution_count>,<function_name>
lcount:<line number>,<execution_count>
branch:<line_number>,<branch_coverage_type>
Where the <branch_coverage_type> is
notexec (Branch not executed)
taken (Branch executed and taken)
nottaken (Branch executed, but not taken)
There can be multiple <file> entries in an intermediate gcov
file. All entries following a <file> pertain to that source file
until the next <file> entry.
Here is a sample when -i is used in conjunction with -b option:
file:array.cc
function:11,1,_Z3sumRKSt6vectorIPiSaIS0_EE
function:22,1,main
lcount:11,1
lcount:12,1
lcount:14,1
branch:14,taken
lcount:26,1
branch:28,nottaken
-m
--demangled-names
Display demangled function names in output. The default is to
show mangled function names.
-x
--hash-filenames
By default, gcov uses the full pathname of the source files to to
create an output filename. This can lead to long filenames that
can overflow filesystem limits. This option creates names of the
form source-file##md5.gcov, where the source-file component is
the final filename part and the md5 component is calculated from
the full mangled name that would have been used otherwise.
gcov should be run with the current directory the same as that when
you invoked the compiler. Otherwise it will not be able to locate
the source files. gcov produces files called mangledname.gcov in the
current directory. These contain the coverage information of the
source file they correspond to. One .gcov file is produced for each
source (or header) file containing code, which was compiled to
produce the data files. The mangledname part of the output file name
is usually simply the source file name, but can be something more
complicated if the -l or -p options are given. Refer to those
options for details.
If you invoke gcov with multiple input files, the contributions from
each input file are summed. Typically you would invoke it with the
same list of files as the final link of your executable.
The .gcov files contain the : separated fields along with program
source code. The format is
<execution_count>:<line_number>:<source line text>
Additional block information may succeed each line, when requested by
command line option. The execution_count is - for lines containing
no code. Unexecuted lines are marked ##### or ====, depending on
whether they are reachable by non-exceptional paths or only
exceptional paths such as C++ exception handlers, respectively.
Some lines of information at the start have line_number of zero.
These preamble lines are of the form
-:0:<tag>:<value>
The ordering and number of these preamble lines will be augmented as
gcov development progresses --- do not rely on them remaining
unchanged. Use tag to locate a particular preamble line.
The additional block information is of the form
<tag> <information>
The information is human readable, but designed to be simple enough
for machine parsing too.
When printing percentages, 0% and 100% are only printed when the
values are exactly 0% and 100% respectively. Other values which
would conventionally be rounded to 0% or 100% are instead printed as
the nearest non-boundary value.
When using gcov, you must first compile your program with two special
GCC options: -fprofile-arcs -ftest-coverage. This tells the compiler
to generate additional information needed by gcov (basically a flow
graph of the program) and also includes additional code in the object
files for generating the extra profiling information needed by gcov.
These additional files are placed in the directory where the object
file is located.
Running the program will cause profile output to be generated. For
each source file compiled with -fprofile-arcs, an accompanying .gcda
file will be placed in the object file directory.
Running gcov with your program's source file names as arguments will
now produce a listing of the code along with frequency of execution
for each line. For example, if your program is called tmp.c, this is
what you see when you use the basic gcov facility:
$ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c
File 'tmp.c'
Lines executed:90.00% of 10
Creating 'tmp.c.gcov'
The file tmp.c.gcov contains output from gcov. Here is a sample:
-: 0:Source:tmp.c
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:int main (void)
1: 4:{
1: 5: int i, total;
-: 6:
1: 7: total = 0;
-: 8:
11: 9: for (i = 0; i < 10; i++)
10: 10: total += i;
-: 11:
1: 12: if (total != 45)
#####: 13: printf ("Failure\n");
-: 14: else
1: 15: printf ("Success\n");
1: 16: return 0;
-: 17:}
When you use the -a option, you will get individual block counts, and
the output looks like this:
-: 0:Source:tmp.c
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:int main (void)
1: 4:{
1: 4-block 0
1: 5: int i, total;
-: 6:
1: 7: total = 0;
-: 8:
11: 9: for (i = 0; i < 10; i++)
11: 9-block 0
10: 10: total += i;
10: 10-block 0
-: 11:
1: 12: if (total != 45)
1: 12-block 0
#####: 13: printf ("Failure\n");
$$$$$: 13-block 0
-: 14: else
1: 15: printf ("Success\n");
1: 15-block 0
1: 16: return 0;
1: 16-block 0
-: 17:}
In this mode, each basic block is only shown on one line -- the last
line of the block. A multi-line block will only contribute to the
execution count of that last line, and other lines will not be shown
to contain code, unless previous blocks end on those lines. The
total execution count of a line is shown and subsequent lines show
the execution counts for individual blocks that end on that line.
After each block, the branch and call counts of the block will be
shown, if the -b option is given.
Because of the way GCC instruments calls, a call count can be shown
after a line with no individual blocks. As you can see, line 13
contains a basic block that was not executed.
When you use the -b option, your output looks like this:
$ gcov -b tmp.c
File 'tmp.c'
Lines executed:90.00% of 10
Branches executed:80.00% of 5
Taken at least once:80.00% of 5
Calls executed:50.00% of 2
Creating 'tmp.c.gcov'
Here is a sample of a resulting tmp.c.gcov file:
-: 0:Source:tmp.c
-: 0:Graph:tmp.gcno
-: 0:Data:tmp.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:#include <stdio.h>
-: 2:
-: 3:int main (void)
function main called 1 returned 1 blocks executed 75%
1: 4:{
1: 5: int i, total;
-: 6:
1: 7: total = 0;
-: 8:
11: 9: for (i = 0; i < 10; i++)
branch 0 taken 91% (fallthrough)
branch 1 taken 9%
10: 10: total += i;
-: 11:
1: 12: if (total != 45)
branch 0 taken 0% (fallthrough)
branch 1 taken 100%
#####: 13: printf ("Failure\n");
call 0 never executed
-: 14: else
1: 15: printf ("Success\n");
call 0 called 1 returned 100%
1: 16: return 0;
-: 17:}
For each function, a line is printed showing how many times the
function is called, how many times it returns and what percentage of
the function's blocks were executed.
For each basic block, a line is printed after the last line of the
basic block describing the branch or call that ends the basic block.
There can be multiple branches and calls listed for a single source
line if there are multiple basic blocks that end on that line. In
this case, the branches and calls are each given a number. There is
no simple way to map these branches and calls back to source
constructs. In general, though, the lowest numbered branch or call
will correspond to the leftmost construct on the source line.
For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed. Otherwise,
the message "never executed" is printed.
For a call, if it was executed at least once, then a percentage
indicating the number of times the call returned divided by the
number of times the call was executed will be printed. This will
usually be 100%, but may be less for functions that call "exit" or
"longjmp", and thus may not return every time they are called.
The execution counts are cumulative. If the example program were
executed again without removing the .gcda file, the count for the
number of times each line in the source was executed would be added
to the results of the previous run(s). This is potentially useful in
several ways. For example, it could be used to accumulate data over
a number of program runs as part of a test verification suite, or to
provide more accurate long-term information over a large number of
program runs.
The data in the .gcda files is saved immediately before the program
exits. For each source file compiled with -fprofile-arcs, the
profiling code first attempts to read in an existing .gcda file; if
the file doesn't match the executable (differing number of basic
block counts) it will ignore the contents of the file. It then adds
in the new execution counts and finally writes the data to the file.
Using gcov with GCC Optimization
If you plan to use gcov to help optimize your code, you must first
compile your program with two special GCC options: -fprofile-arcs
-ftest-coverage. Aside from that, you can use any other GCC options;
but if you want to prove that every single line in your program was
executed, you should not compile with optimization at the same time.
On some machines the optimizer can eliminate some simple code lines
by combining them with other lines. For example, code like this:
if (a != b)
c = 1;
else
c = 0;
can be compiled into one instruction on some machines. In this case,
there is no way for gcov to calculate separate execution counts for
each line because there isn't separate code for each line. Hence the
gcov output looks like this if you compiled the program with
optimization:
100: 12:if (a != b)
100: 13: c = 1;
100: 14:else
100: 15: c = 0;
The output shows that this block of code, combined by optimization,
executed 100 times. In one sense this result is correct, because
there was only one instruction representing all four of these lines.
However, the output does not indicate how many times the result was 0
and how many times the result was 1.
Inlineable functions can create unexpected line counts. Line counts
are shown for the source code of the inlineable function, but what is
shown depends on where the function is inlined, or if it is not
inlined at all.
If the function is not inlined, the compiler must emit an out of line
copy of the function, in any object file that needs it. If fileA.o
and fileB.o both contain out of line bodies of a particular
inlineable function, they will also both contain coverage counts for
that function. When fileA.o and fileB.o are linked together, the
linker will, on many systems, select one of those out of line bodies
for all calls to that function, and remove or ignore the other.
Unfortunately, it will not remove the coverage counters for the
unused function body. Hence when instrumented, all but one use of
that function will show zero counts.
If the function is inlined in several places, the block structure in
each location might not be the same. For instance, a condition might
now be calculable at compile time in some instances. Because the
coverage of all the uses of the inline function will be shown for the
same source lines, the line counts themselves might seem
inconsistent.
Long-running applications can use the "__gcov_reset" and
"__gcov_dump" facilities to restrict profile collection to the
program region of interest. Calling "__gcov_reset(void)" will clear
all profile counters to zero, and calling "__gcov_dump(void)" will
cause the profile information collected at that point to be dumped to
.gcda output files. Instrumented applications use a static
destructor with priority 99 to invoke the "__gcov_dump" function.
Thus "__gcov_dump" is executed after all user defined static
destructors, as well as handlers registered with "atexit".
gpl(7), gfdl(7), fsf-funding(7), gcc(1) and the Info entry for gcc.
Copyright (c) 1996-2017 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Funding
Free Software", the Front-Cover texts being (a) (see below), and with
the Back-Cover Texts being (b) (see below). A copy of the license is
included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
This page is part of the gcc (GNU Compiler Collection) project.
Information about the project can be found at ⟨http://gcc.gnu.org/⟩.
If you have a bug report for this manual page, see
⟨http://gcc.gnu.org/bugs/⟩. This page was obtained from the tarball
gcc-7.1.0.tar.gz fetched from
⟨ftp://ftp.fu-berlin.de/unix/languages/gcc/releases/⟩ on 2017-07-05.
If you discover any rendering problems in this HTML version of the
page, or you believe there is a better or more up-to-date source for
the page, or you have corrections or improvements to the information
in this COLOPHON (which is not part of the original manual page),
send a mail to man-pages@man7.org
gcc-7.1.0 2017-05-02 GCOV(1)