Intel(R) Management Engine (ME) Client bus API¶
Rationale¶
The MEI character device is useful for dedicated applications to send and receive data to the many FW appliance found in Intel’s ME from the user space. However, for some of the ME functionalities it makes sense to leverage existing software stack and expose them through existing kernel subsystems.
In order to plug seamlessly into the kernel device driver model we add kernel virtual bus abstraction on top of the MEI driver. This allows implementing Linux kernel drivers for the various MEI features as a stand alone entities found in their respective subsystem. Existing device drivers can even potentially be re-used by adding an MEI CL bus layer to the existing code.
MEI CL bus API¶
A driver implementation for an MEI Client is very similar to any other existing bus
based device drivers. The driver registers itself as an MEI CL bus driver through
the struct mei_cl_driver
structure defined in include/linux/mei_cl_bus.c
struct mei_cl_driver {
struct device_driver driver;
const char *name;
const struct mei_cl_device_id *id_table;
int (*probe)(struct mei_cl_device *dev, const struct mei_cl_id *id);
int (*remove)(struct mei_cl_device *dev);
};
The mei_cl_device_id structure defined in include/linux/mod_devicetable.h
allows a
driver to bind itself against a device name.
struct mei_cl_device_id {
char name[MEI_CL_NAME_SIZE];
uuid_le uuid;
__u8 version;
kernel_ulong_t driver_info;
};
To actually register a driver on the ME Client bus one must call the mei_cl_add_driver()
API. This is typically called at module initialization time.
Once the driver is registered and bound to the device, a driver will typically
try to do some I/O on this bus and this should be done through the mei_cl_send()
and mei_cl_recv()
functions. More detailed information is in API: section.
In order for a driver to be notified about pending traffic or event, the driver
should register a callback via mei_cl_devev_register_rx_cb()
and
mei_cldev_register_notify_cb()
function respectively.
API:¶
-
ssize_t
mei_cldev_send_vtag
(struct mei_cl_device *cldev, u8 *buf, size_t length, u8 vtag)¶ me device send with vtag (write)
Parameters
struct mei_cl_device *cldev
- me client device
u8 *buf
- buffer to send
size_t length
- buffer length
u8 vtag
- virtual tag
Return
- written size in bytes
- < 0 on error
-
ssize_t
mei_cldev_recv_vtag
(struct mei_cl_device *cldev, u8 *buf, size_t length, u8 *vtag)¶ client receive with vtag (read)
Parameters
struct mei_cl_device *cldev
- me client device
u8 *buf
- buffer to receive
size_t length
- buffer length
u8 *vtag
- virtual tag
Return
- read size in bytes
- < 0 on error
-
ssize_t
mei_cldev_recv_nonblock_vtag
(struct mei_cl_device *cldev, u8 *buf, size_t length, u8 *vtag)¶ non block client receive with vtag (read)
Parameters
struct mei_cl_device *cldev
- me client device
u8 *buf
- buffer to receive
size_t length
- buffer length
u8 *vtag
- virtual tag
Return
- read size in bytes
- -EAGAIN if function will block.
- < 0 on other error
-
ssize_t
mei_cldev_send
(struct mei_cl_device *cldev, u8 *buf, size_t length)¶ me device send (write)
Parameters
struct mei_cl_device *cldev
- me client device
u8 *buf
- buffer to send
size_t length
- buffer length
Return
- written size in bytes
- < 0 on error
-
ssize_t
mei_cldev_recv
(struct mei_cl_device *cldev, u8 *buf, size_t length)¶ client receive (read)
Parameters
struct mei_cl_device *cldev
- me client device
u8 *buf
- buffer to receive
size_t length
- buffer length
Return
read size in bytes of < 0 on error
-
ssize_t
mei_cldev_recv_nonblock
(struct mei_cl_device *cldev, u8 *buf, size_t length)¶ non block client receive (read)
Parameters
struct mei_cl_device *cldev
- me client device
u8 *buf
- buffer to receive
size_t length
- buffer length
Return
- read size in bytes of < 0 on error
- -EAGAIN if function will block.
-
int
mei_cldev_register_rx_cb
(struct mei_cl_device *cldev, mei_cldev_cb_t rx_cb)¶ register Rx event callback
Parameters
struct mei_cl_device *cldev
- me client devices
mei_cldev_cb_t rx_cb
- callback function
Return
- 0 on success
- -EALREADY if an callback is already registered <0 on other errors
-
int
mei_cldev_register_notif_cb
(struct mei_cl_device *cldev, mei_cldev_cb_t notif_cb)¶ register FW notification event callback
Parameters
struct mei_cl_device *cldev
- me client devices
mei_cldev_cb_t notif_cb
- callback function
Return
- 0 on success
- -EALREADY if an callback is already registered <0 on other errors
-
void *
mei_cldev_get_drvdata
(const struct mei_cl_device *cldev)¶ driver data getter
Parameters
const struct mei_cl_device *cldev
- mei client device
Return
driver private data
-
void
mei_cldev_set_drvdata
(struct mei_cl_device *cldev, void *data)¶ driver data setter
Parameters
struct mei_cl_device *cldev
- mei client device
void *data
- data to store
-
const uuid_le *
mei_cldev_uuid
(const struct mei_cl_device *cldev)¶ return uuid of the underlying me client
Parameters
const struct mei_cl_device *cldev
- mei client device
Return
me client uuid
-
u8
mei_cldev_ver
(const struct mei_cl_device *cldev)¶ return protocol version of the underlying me client
Parameters
const struct mei_cl_device *cldev
- mei client device
Return
me client protocol version
-
bool
mei_cldev_enabled
(struct mei_cl_device *cldev)¶ check whether the device is enabled
Parameters
struct mei_cl_device *cldev
- mei client device
Return
true if me client is initialized and connected
-
int
mei_cldev_enable
(struct mei_cl_device *cldev)¶ enable me client device create connection with me client
Parameters
struct mei_cl_device *cldev
- me client device
Return
0 on success and < 0 on error
-
int
mei_cldev_disable
(struct mei_cl_device *cldev)¶ disable me client device disconnect form the me client
Parameters
struct mei_cl_device *cldev
- me client device
Return
0 on success and < 0 on error
Example¶
As a theoretical example let’s pretend the ME comes with a “contact” NFC IP. The driver init and exit routines for this device would look like:
#define CONTACT_DRIVER_NAME "contact"
static struct mei_cl_device_id contact_mei_cl_tbl[] = {
{ CONTACT_DRIVER_NAME, },
/* required last entry */
{ }
};
MODULE_DEVICE_TABLE(mei_cl, contact_mei_cl_tbl);
static struct mei_cl_driver contact_driver = {
.id_table = contact_mei_tbl,
.name = CONTACT_DRIVER_NAME,
.probe = contact_probe,
.remove = contact_remove,
};
static int contact_init(void)
{
int r;
r = mei_cl_driver_register(&contact_driver);
if (r) {
pr_err(CONTACT_DRIVER_NAME ": driver registration failed\n");
return r;
}
return 0;
}
static void __exit contact_exit(void)
{
mei_cl_driver_unregister(&contact_driver);
}
module_init(contact_init);
module_exit(contact_exit);
And the driver’s simplified probe routine would look like that:
int contact_probe(struct mei_cl_device *dev, struct mei_cl_device_id *id)
{
[...]
mei_cldev_enable(dev);
mei_cldev_register_rx_cb(dev, contact_rx_cb);
return 0;
}
In the probe routine the driver first enable the MEI device and then registers
an rx handler which is as close as it can get to registering a threaded IRQ handler.
The handler implementation will typically call mei_cldev_recv()
and then
process received data.
#define MAX_PAYLOAD 128
#define HDR_SIZE 4
static void conntact_rx_cb(struct mei_cl_device *cldev)
{
struct contact *c = mei_cldev_get_drvdata(cldev);
unsigned char payload[MAX_PAYLOAD];
ssize_t payload_sz;
payload_sz = mei_cldev_recv(cldev, payload, MAX_PAYLOAD)
if (reply_size < HDR_SIZE) {
return;
}
c->process_rx(payload);
}