Package | Description |
---|---|
org.opencv.aruco | |
org.opencv.core | |
org.opencv.dnn | |
org.opencv.face | |
org.opencv.features2d | |
org.opencv.imgcodecs | |
org.opencv.imgproc | |
org.opencv.objdetect | |
org.opencv.xfeatures2d |
Modifier and Type | Method and Description |
---|---|
MatOfInt |
Board.get_ids() |
Modifier and Type | Method and Description |
---|---|
static MatOfInt |
MatOfInt.fromNativeAddr(long addr) |
Modifier and Type | Method and Description |
---|---|
static void |
Core.mixChannels(List<Mat> src,
List<Mat> dst,
MatOfInt fromTo) |
Modifier and Type | Method and Description |
---|---|
MatOfInt |
Net.getUnconnectedOutLayers()
Returns indexes of layers with unconnected outputs.
|
Modifier and Type | Method and Description |
---|---|
void |
DetectionModel.detect(Mat frame,
MatOfInt classIds,
MatOfFloat confidences,
MatOfRect boxes)
Given the
input frame, create input blob, run net and return result detections. |
void |
DetectionModel.detect(Mat frame,
MatOfInt classIds,
MatOfFloat confidences,
MatOfRect boxes,
float confThreshold)
Given the
input frame, create input blob, run net and return result detections. |
void |
DetectionModel.detect(Mat frame,
MatOfInt classIds,
MatOfFloat confidences,
MatOfRect boxes,
float confThreshold,
float nmsThreshold)
Given the
input frame, create input blob, run net and return result detections. |
long |
Net.getFLOPS(int layerId,
MatOfInt netInputShape) |
long |
Net.getFLOPS(MatOfInt netInputShape) |
void |
Net.getMemoryConsumption(int layerId,
MatOfInt netInputShape,
long[] weights,
long[] blobs) |
void |
Net.getMemoryConsumption(MatOfInt netInputShape,
long[] weights,
long[] blobs) |
static void |
Dnn.NMSBoxes(MatOfRect2d bboxes,
MatOfFloat scores,
float score_threshold,
float nms_threshold,
MatOfInt indices)
Performs non maximum suppression given boxes and corresponding scores.
|
static void |
Dnn.NMSBoxes(MatOfRect2d bboxes,
MatOfFloat scores,
float score_threshold,
float nms_threshold,
MatOfInt indices,
float eta)
Performs non maximum suppression given boxes and corresponding scores.
|
static void |
Dnn.NMSBoxes(MatOfRect2d bboxes,
MatOfFloat scores,
float score_threshold,
float nms_threshold,
MatOfInt indices,
float eta,
int top_k)
Performs non maximum suppression given boxes and corresponding scores.
|
static void |
Dnn.NMSBoxesRotated(MatOfRotatedRect bboxes,
MatOfFloat scores,
float score_threshold,
float nms_threshold,
MatOfInt indices) |
static void |
Dnn.NMSBoxesRotated(MatOfRotatedRect bboxes,
MatOfFloat scores,
float score_threshold,
float nms_threshold,
MatOfInt indices,
float eta) |
static void |
Dnn.NMSBoxesRotated(MatOfRotatedRect bboxes,
MatOfFloat scores,
float score_threshold,
float nms_threshold,
MatOfInt indices,
float eta,
int top_k) |
void |
Net.setInputShape(String inputName,
MatOfInt shape)
Specify shape of network input.
|
Modifier and Type | Method and Description |
---|---|
long |
Net.getFLOPS(int layerId,
List<MatOfInt> netInputShapes) |
long |
Net.getFLOPS(List<MatOfInt> netInputShapes)
Computes FLOP for whole loaded model with specified input shapes.
|
void |
Net.getMemoryConsumption(int layerId,
List<MatOfInt> netInputShapes,
long[] weights,
long[] blobs) |
Modifier and Type | Method and Description |
---|---|
MatOfInt |
FaceRecognizer.getLabelsByString(String str)
Gets vector of labels by string.
|
Modifier and Type | Method and Description |
---|---|
static BRISK |
BRISK.create(int thresh,
int octaves,
MatOfFloat radiusList,
MatOfInt numberList)
The BRISK constructor for a custom pattern, detection threshold and octaves
|
static BRISK |
BRISK.create(int thresh,
int octaves,
MatOfFloat radiusList,
MatOfInt numberList,
float dMax)
The BRISK constructor for a custom pattern, detection threshold and octaves
|
static BRISK |
BRISK.create(int thresh,
int octaves,
MatOfFloat radiusList,
MatOfInt numberList,
float dMax,
float dMin)
The BRISK constructor for a custom pattern, detection threshold and octaves
|
static BRISK |
BRISK.create(int thresh,
int octaves,
MatOfFloat radiusList,
MatOfInt numberList,
float dMax,
float dMin,
MatOfInt indexChange)
The BRISK constructor for a custom pattern, detection threshold and octaves
|
static BRISK |
BRISK.create(MatOfFloat radiusList,
MatOfInt numberList)
The BRISK constructor for a custom pattern
|
static BRISK |
BRISK.create(MatOfFloat radiusList,
MatOfInt numberList,
float dMax)
The BRISK constructor for a custom pattern
|
static BRISK |
BRISK.create(MatOfFloat radiusList,
MatOfInt numberList,
float dMax,
float dMin)
The BRISK constructor for a custom pattern
|
static BRISK |
BRISK.create(MatOfFloat radiusList,
MatOfInt numberList,
float dMax,
float dMin,
MatOfInt indexChange)
The BRISK constructor for a custom pattern
|
Modifier and Type | Method and Description |
---|---|
static boolean |
Imgcodecs.imencode(String ext,
Mat img,
MatOfByte buf,
MatOfInt params)
Encodes an image into a memory buffer.
|
static boolean |
Imgcodecs.imwrite(String filename,
Mat img,
MatOfInt params)
Saves an image to a specified file.
|
Modifier and Type | Method and Description |
---|---|
static void |
Imgproc.calcBackProject(List<Mat> images,
MatOfInt channels,
Mat hist,
Mat dst,
MatOfFloat ranges,
double scale) |
static void |
Imgproc.calcHist(List<Mat> images,
MatOfInt channels,
Mat mask,
Mat hist,
MatOfInt histSize,
MatOfFloat ranges) |
static void |
Imgproc.calcHist(List<Mat> images,
MatOfInt channels,
Mat mask,
Mat hist,
MatOfInt histSize,
MatOfFloat ranges,
boolean accumulate) |
static void |
Imgproc.convexHull(MatOfPoint points,
MatOfInt hull)
Finds the convex hull of a point set.
|
static void |
Imgproc.convexHull(MatOfPoint points,
MatOfInt hull,
boolean clockwise)
Finds the convex hull of a point set.
|
static void |
Imgproc.convexityDefects(MatOfPoint contour,
MatOfInt convexhull,
MatOfInt4 convexityDefects)
Finds the convexity defects of a contour.
|
void |
Subdiv2D.getLeadingEdgeList(MatOfInt leadingEdgeList)
Returns a list of the leading edge ID connected to each triangle.
|
void |
Subdiv2D.getVoronoiFacetList(MatOfInt idx,
List<MatOfPoint2f> facetList,
MatOfPoint2f facetCenters)
Returns a list of all Voronoi facets.
|
Modifier and Type | Method and Description |
---|---|
void |
CascadeClassifier.detectMultiScale2(Mat image,
MatOfRect objects,
MatOfInt numDetections) |
void |
CascadeClassifier.detectMultiScale2(Mat image,
MatOfRect objects,
MatOfInt numDetections,
double scaleFactor) |
void |
CascadeClassifier.detectMultiScale2(Mat image,
MatOfRect objects,
MatOfInt numDetections,
double scaleFactor,
int minNeighbors) |
void |
CascadeClassifier.detectMultiScale2(Mat image,
MatOfRect objects,
MatOfInt numDetections,
double scaleFactor,
int minNeighbors,
int flags) |
void |
CascadeClassifier.detectMultiScale2(Mat image,
MatOfRect objects,
MatOfInt numDetections,
double scaleFactor,
int minNeighbors,
int flags,
Size minSize) |
void |
CascadeClassifier.detectMultiScale2(Mat image,
MatOfRect objects,
MatOfInt numDetections,
double scaleFactor,
int minNeighbors,
int flags,
Size minSize,
Size maxSize) |
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights)
This function allows you to retrieve the final stage decision certainty of classification.
|
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights,
double scaleFactor)
This function allows you to retrieve the final stage decision certainty of classification.
|
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights,
double scaleFactor,
int minNeighbors)
This function allows you to retrieve the final stage decision certainty of classification.
|
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights,
double scaleFactor,
int minNeighbors,
int flags)
This function allows you to retrieve the final stage decision certainty of classification.
|
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights,
double scaleFactor,
int minNeighbors,
int flags,
Size minSize)
This function allows you to retrieve the final stage decision certainty of classification.
|
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights,
double scaleFactor,
int minNeighbors,
int flags,
Size minSize,
Size maxSize)
This function allows you to retrieve the final stage decision certainty of classification.
|
void |
CascadeClassifier.detectMultiScale3(Mat image,
MatOfRect objects,
MatOfInt rejectLevels,
MatOfDouble levelWeights,
double scaleFactor,
int minNeighbors,
int flags,
Size minSize,
Size maxSize,
boolean outputRejectLevels)
This function allows you to retrieve the final stage decision certainty of classification.
|
static void |
Objdetect.groupRectangles(MatOfRect rectList,
MatOfInt weights,
int groupThreshold) |
static void |
Objdetect.groupRectangles(MatOfRect rectList,
MatOfInt weights,
int groupThreshold,
double eps) |
Modifier and Type | Method and Description |
---|---|
MatOfInt |
PCTSignatures.getInitSeedIndexes()
Initial seeds (initial number of clusters) for the k-means algorithm.
|
Modifier and Type | Method and Description |
---|---|
static FREAK |
FREAK.create(boolean orientationNormalized,
boolean scaleNormalized,
float patternScale,
int nOctaves,
MatOfInt selectedPairs) |
static PCTSignatures |
PCTSignatures.create(MatOfPoint2f initSamplingPoints,
MatOfInt initClusterSeedIndexes)
Creates PCTSignatures algorithm using pre-generated sampling points
and clusterization seeds indexes.
|
static void |
Xfeatures2d.matchLOGOS(MatOfKeyPoint keypoints1,
MatOfKeyPoint keypoints2,
MatOfInt nn1,
MatOfInt nn2,
MatOfDMatch matches1to2)
LOGOS (Local geometric support for high-outlier spatial verification) feature matching strategy described in CITE: Lowry2018LOGOSLG .
|
void |
PCTSignatures.setInitSeedIndexes(MatOfInt initSeedIndexes)
Initial seed indexes for the k-means algorithm.
|
Copyright © 2020. All rights reserved.