@Namespace(value="cv::xfeatures2d") @Properties(inherit=opencv_xfeatures2d.class) public class PCTSignatures extends Algorithm
Pointer.CustomDeallocator, Pointer.Deallocator, Pointer.NativeDeallocator, Pointer.ReferenceCounter
Modifier and Type | Field and Description |
---|---|
static int |
GAUSSIAN
enum cv::xfeatures2d::PCTSignatures::SimilarityFunction
|
static int |
HEURISTIC
enum cv::xfeatures2d::PCTSignatures::SimilarityFunction
|
static int |
L_INFINITY
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
L0_25
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
L0_5
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
L1
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
L2
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
L2SQUARED
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
L5
enum cv::xfeatures2d::PCTSignatures::DistanceFunction
|
static int |
MINUS
enum cv::xfeatures2d::PCTSignatures::SimilarityFunction
|
static int |
NORMAL
enum cv::xfeatures2d::PCTSignatures::PointDistribution
|
static int |
REGULAR
enum cv::xfeatures2d::PCTSignatures::PointDistribution
|
static int |
UNIFORM
enum cv::xfeatures2d::PCTSignatures::PointDistribution
|
Constructor and Description |
---|
PCTSignatures(Pointer p)
Pointer cast constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
computeSignature(GpuMat image,
GpuMat signature) |
void |
computeSignature(Mat image,
Mat signature)
\brief Computes signature of given image.
|
void |
computeSignature(UMat image,
UMat signature) |
void |
computeSignatures(MatVector images,
MatVector signatures)
\brief Computes signatures for multiple images in parallel.
|
static PCTSignatures |
create() |
static PCTSignatures |
create(int initSampleCount,
int initSeedCount,
int pointDistribution)
\brief Creates PCTSignatures algorithm using sample and seed count.
|
static PCTSignatures |
create(Point2fVector initSamplingPoints,
int initSeedCount)
\brief Creates PCTSignatures algorithm using pre-generated sampling points
and number of clusterization seeds.
|
static PCTSignatures |
create(Point2fVector initSamplingPoints,
int[] initClusterSeedIndexes) |
static PCTSignatures |
create(Point2fVector initSamplingPoints,
IntBuffer initClusterSeedIndexes) |
static PCTSignatures |
create(Point2fVector initSamplingPoints,
IntPointer initClusterSeedIndexes)
\brief Creates PCTSignatures algorithm using pre-generated sampling points
and clusterization seeds indexes.
|
static void |
drawSignature(GpuMat source,
GpuMat signature,
GpuMat result) |
static void |
drawSignature(GpuMat source,
GpuMat signature,
GpuMat result,
float radiusToShorterSideRatio,
int borderThickness) |
static void |
drawSignature(Mat source,
Mat signature,
Mat result) |
static void |
drawSignature(Mat source,
Mat signature,
Mat result,
float radiusToShorterSideRatio,
int borderThickness)
\brief Draws signature in the source image and outputs the result.
|
static void |
drawSignature(UMat source,
UMat signature,
UMat result) |
static void |
drawSignature(UMat source,
UMat signature,
UMat result,
float radiusToShorterSideRatio,
int borderThickness) |
static void |
generateInitPoints(Point2fVector initPoints,
int count,
int pointDistribution)
\brief Generates initial sampling points according to selected point distribution.
|
int |
getClusterMinSize()
\brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
|
int |
getDistanceFunction()
\brief Distance function selector used for measuring distance between two points in k-means.
|
float |
getDropThreshold()
\brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
|
int |
getGrayscaleBits()
\brief Color resolution of the greyscale bitmap represented in allocated bits
(i.e., value 4 means that 16 shades of grey are used).
|
int |
getInitSeedCount()
\brief Number of initial seeds (initial number of clusters) for the k-means algorithm.
|
IntPointer |
getInitSeedIndexes()
\brief Initial seeds (initial number of clusters) for the k-means algorithm.
|
int |
getIterationCount()
\brief Number of iterations of the k-means clustering.
|
float |
getJoiningDistance()
\brief Threshold euclidean distance between two centroids.
|
int |
getMaxClustersCount()
\brief Maximal number of generated clusters.
|
int |
getSampleCount()
\brief Number of initial samples taken from the image.
|
Point2fVector |
getSamplingPoints()
\brief Initial samples taken from the image.
|
float |
getWeightA()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
float |
getWeightB()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
float |
getWeightContrast()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
float |
getWeightEntropy()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
float |
getWeightL()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
float |
getWeightX()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
float |
getWeightY()
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
int |
getWindowRadius()
\brief Size of the texture sampling window used to compute contrast and entropy
(center of the window is always in the pixel selected by x,y coordinates
of the corresponding feature sample).
|
void |
setClusterMinSize(int clusterMinSize)
\brief This parameter multiplied by the index of iteration gives lower limit for cluster size.
|
void |
setDistanceFunction(int distanceFunction)
\brief Distance function selector used for measuring distance between two points in k-means.
|
void |
setDropThreshold(float dropThreshold)
\brief Remove centroids in k-means whose weight is lesser or equal to given threshold.
|
void |
setGrayscaleBits(int grayscaleBits)
\brief Color resolution of the greyscale bitmap represented in allocated bits
(i.e., value 4 means that 16 shades of grey are used).
|
void |
setInitSeedIndexes(int[] initSeedIndexes) |
void |
setInitSeedIndexes(IntBuffer initSeedIndexes) |
void |
setInitSeedIndexes(IntPointer initSeedIndexes)
\brief Initial seed indexes for the k-means algorithm.
|
void |
setIterationCount(int iterationCount)
\brief Number of iterations of the k-means clustering.
|
void |
setJoiningDistance(float joiningDistance)
\brief Threshold euclidean distance between two centroids.
|
void |
setMaxClustersCount(int maxClustersCount)
\brief Maximal number of generated clusters.
|
void |
setSamplingPoints(Point2fVector samplingPoints)
\brief Sets sampling points used to sample the input image.
|
void |
setTranslation(int idx,
float value)
\brief Translations of the individual axes of the feature space.
|
void |
setTranslations(float[] translations) |
void |
setTranslations(FloatBuffer translations) |
void |
setTranslations(FloatPointer translations)
\brief Translations of the individual axes of the feature space.
|
void |
setWeight(int idx,
float value)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
|
void |
setWeightA(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWeightB(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWeightContrast(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWeightEntropy(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWeightL(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWeights(float[] weights) |
void |
setWeights(FloatBuffer weights) |
void |
setWeights(FloatPointer weights)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
|
void |
setWeightX(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWeightY(float weight)
\brief Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast.
|
void |
setWindowRadius(int radius)
\brief Size of the texture sampling window used to compute contrast and entropy
(center of the window is always in the pixel selected by x,y coordinates
of the corresponding feature sample).
|
clear, empty, getDefaultName, position, read, save, save, write, write, write
address, asBuffer, asByteBuffer, availablePhysicalBytes, calloc, capacity, capacity, close, deallocate, deallocate, deallocateReferences, deallocator, deallocator, equals, fill, formatBytes, free, hashCode, isNull, isNull, limit, limit, malloc, maxBytes, maxPhysicalBytes, memchr, memcmp, memcpy, memmove, memset, offsetof, parseBytes, physicalBytes, position, put, realloc, referenceCount, releaseReference, retainReference, setNull, sizeof, toString, totalBytes, totalPhysicalBytes, withDeallocator, zero
public static final int L0_25
public static final int L0_5
public static final int L1
public static final int L2
public static final int L2SQUARED
public static final int L5
public static final int L_INFINITY
public static final int UNIFORM
public static final int REGULAR
public static final int NORMAL
public static final int MINUS
public static final int GAUSSIAN
public static final int HEURISTIC
public PCTSignatures(Pointer p)
Pointer.Pointer(Pointer)
.@opencv_core.Ptr public static PCTSignatures create(int initSampleCount, int initSeedCount, int pointDistribution)
initSampleCount
- Number of points used for image sampling.initSeedCount
- Number of initial clusterization seeds.
Must be lower or equal to initSampleCountpointDistribution
- Distribution of generated points. Default: UNIFORM.
Available: UNIFORM, REGULAR, NORMAL.@opencv_core.Ptr public static PCTSignatures create()
@opencv_core.Ptr public static PCTSignatures create(@Const @ByRef Point2fVector initSamplingPoints, int initSeedCount)
initSamplingPoints
- Sampling points used in image sampling.initSeedCount
- Number of initial clusterization seeds.
Must be lower or equal to initSamplingPoints.size().@opencv_core.Ptr public static PCTSignatures create(@Const @ByRef Point2fVector initSamplingPoints, @StdVector IntPointer initClusterSeedIndexes)
initSamplingPoints
- Sampling points used in image sampling.initClusterSeedIndexes
- Indexes of initial clusterization seeds.
Its size must be lower or equal to initSamplingPoints.size().@opencv_core.Ptr public static PCTSignatures create(@Const @ByRef Point2fVector initSamplingPoints, @StdVector IntBuffer initClusterSeedIndexes)
@opencv_core.Ptr public static PCTSignatures create(@Const @ByRef Point2fVector initSamplingPoints, @StdVector int[] initClusterSeedIndexes)
public void computeSignature(@ByVal Mat image, @ByVal Mat signature)
image
- Input image of CV_8U type.signature
- Output computed signature.public void computeSignatures(@Const @ByRef MatVector images, @ByRef MatVector signatures)
images
- Vector of input images of CV_8U type.signatures
- Vector of computed signatures.public static void drawSignature(@ByVal Mat source, @ByVal Mat signature, @ByVal Mat result, float radiusToShorterSideRatio, int borderThickness)
source
- Source image.signature
- Image signature.result
- Output result.radiusToShorterSideRatio
- Determines maximal radius of signature in the output image.borderThickness
- Border thickness of the visualized signature.public static void drawSignature(@ByVal Mat source, @ByVal Mat signature, @ByVal Mat result)
public static void drawSignature(@ByVal UMat source, @ByVal UMat signature, @ByVal UMat result, float radiusToShorterSideRatio, int borderThickness)
public static void drawSignature(@ByVal UMat source, @ByVal UMat signature, @ByVal UMat result)
public static void drawSignature(@ByVal GpuMat source, @ByVal GpuMat signature, @ByVal GpuMat result, float radiusToShorterSideRatio, int borderThickness)
public static void drawSignature(@ByVal GpuMat source, @ByVal GpuMat signature, @ByVal GpuMat result)
public static void generateInitPoints(@ByRef Point2fVector initPoints, int count, int pointDistribution)
initPoints
- Output vector where the generated points will be saved.count
- Number of points to generate.pointDistribution
- Point distribution selector.
Available: UNIFORM, REGULAR, NORMAL.
\note Generated coordinates are in range [0..1)public int getSampleCount()
public int getGrayscaleBits()
public void setGrayscaleBits(int grayscaleBits)
public int getWindowRadius()
public void setWindowRadius(int radius)
public float getWeightX()
public void setWeightX(float weight)
public float getWeightY()
public void setWeightY(float weight)
public float getWeightL()
public void setWeightL(float weight)
public float getWeightA()
public void setWeightA(float weight)
public float getWeightB()
public void setWeightB(float weight)
public float getWeightContrast()
public void setWeightContrast(float weight)
public float getWeightEntropy()
public void setWeightEntropy(float weight)
@ByVal public Point2fVector getSamplingPoints()
public void setWeight(int idx, float value)
idx
- ID of the weightvalue
- Value of the weight
\note
WEIGHT_IDX = 0;
X_IDX = 1;
Y_IDX = 2;
L_IDX = 3;
A_IDX = 4;
B_IDX = 5;
CONTRAST_IDX = 6;
ENTROPY_IDX = 7;public void setWeights(@StdVector FloatPointer weights)
weights
- Values of all weights.
\note
WEIGHT_IDX = 0;
X_IDX = 1;
Y_IDX = 2;
L_IDX = 3;
A_IDX = 4;
B_IDX = 5;
CONTRAST_IDX = 6;
ENTROPY_IDX = 7;public void setWeights(@StdVector FloatBuffer weights)
public void setWeights(@StdVector float[] weights)
public void setTranslation(int idx, float value)
idx
- ID of the translationvalue
- Value of the translation
\note
WEIGHT_IDX = 0;
X_IDX = 1;
Y_IDX = 2;
L_IDX = 3;
A_IDX = 4;
B_IDX = 5;
CONTRAST_IDX = 6;
ENTROPY_IDX = 7;public void setTranslations(@StdVector FloatPointer translations)
translations
- Values of all translations.
\note
WEIGHT_IDX = 0;
X_IDX = 1;
Y_IDX = 2;
L_IDX = 3;
A_IDX = 4;
B_IDX = 5;
CONTRAST_IDX = 6;
ENTROPY_IDX = 7;public void setTranslations(@StdVector FloatBuffer translations)
public void setTranslations(@StdVector float[] translations)
public void setSamplingPoints(@ByVal Point2fVector samplingPoints)
samplingPoints
- Vector of sampling points in range [0..1)
\note Number of sampling points must be greater or equal to clusterization seed count.@StdVector public IntPointer getInitSeedIndexes()
public void setInitSeedIndexes(@StdVector IntPointer initSeedIndexes)
public void setInitSeedIndexes(@StdVector IntBuffer initSeedIndexes)
public void setInitSeedIndexes(@StdVector int[] initSeedIndexes)
public int getInitSeedCount()
public int getIterationCount()
public void setIterationCount(int iterationCount)
public int getMaxClustersCount()
public void setMaxClustersCount(int maxClustersCount)
public int getClusterMinSize()
public void setClusterMinSize(int clusterMinSize)
public float getJoiningDistance()
public void setJoiningDistance(float joiningDistance)
public float getDropThreshold()
public void setDropThreshold(float dropThreshold)
public int getDistanceFunction()
public void setDistanceFunction(int distanceFunction)
Copyright © 2020. All rights reserved.