@Namespace(value="cv") @NoOffset @Properties(inherit=opencv_objdetect.class) public class HOGDescriptor extends Pointer
the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs \cite Dalal2005 .
useful links:
https://hal.inria.fr/inria-00548512/document/
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
http://www.learnopencv.com/histogram-of-oriented-gradients
http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial
Pointer.CustomDeallocator, Pointer.Deallocator, Pointer.NativeDeallocator, Pointer.ReferenceCounter
Modifier and Type | Field and Description |
---|---|
static int |
DEFAULT_NLEVELS
enum cv::HOGDescriptor::
|
static int |
DESCR_FORMAT_COL_BY_COL
enum cv::HOGDescriptor::DescriptorStorageFormat
|
static int |
DESCR_FORMAT_ROW_BY_ROW
enum cv::HOGDescriptor::DescriptorStorageFormat
|
static int |
L2Hys
enum cv::HOGDescriptor::HistogramNormType
|
Constructor and Description |
---|
HOGDescriptor()
\brief Creates the HOG descriptor and detector with default params.
|
HOGDescriptor(BytePointer filename)
\overload
|
HOGDescriptor(HOGDescriptor d)
\overload
|
HOGDescriptor(long size)
Native array allocator.
|
HOGDescriptor(Pointer p)
Pointer cast constructor.
|
HOGDescriptor(Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins) |
HOGDescriptor(Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
boolean _gammaCorrection,
int _nlevels,
boolean _signedGradient)
\overload
|
HOGDescriptor(String filename) |
Modifier and Type | Method and Description |
---|---|
Size |
blockSize()
Block size in pixels.
|
HOGDescriptor |
blockSize(Size setter) |
Size |
blockStride()
Block stride.
|
HOGDescriptor |
blockStride(Size setter) |
Size |
cellSize()
Cell size.
|
HOGDescriptor |
cellSize(Size setter) |
boolean |
checkDetectorSize()
\brief Checks if detector size equal to descriptor size.
|
void |
compute(GpuMat img,
float[] descriptors) |
void |
compute(GpuMat img,
float[] descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(GpuMat img,
FloatBuffer descriptors) |
void |
compute(GpuMat img,
FloatBuffer descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(GpuMat img,
FloatPointer descriptors) |
void |
compute(GpuMat img,
FloatPointer descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(Mat img,
float[] descriptors) |
void |
compute(Mat img,
float[] descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(Mat img,
FloatBuffer descriptors) |
void |
compute(Mat img,
FloatBuffer descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(Mat img,
FloatPointer descriptors) |
void |
compute(Mat img,
FloatPointer descriptors,
Size winStride,
Size padding,
PointVector locations)
\brief Computes HOG descriptors of given image.
|
void |
compute(UMat img,
float[] descriptors) |
void |
compute(UMat img,
float[] descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(UMat img,
FloatBuffer descriptors) |
void |
compute(UMat img,
FloatBuffer descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
compute(UMat img,
FloatPointer descriptors) |
void |
compute(UMat img,
FloatPointer descriptors,
Size winStride,
Size padding,
PointVector locations) |
void |
computeGradient(GpuMat img,
GpuMat grad,
GpuMat angleOfs) |
void |
computeGradient(GpuMat img,
GpuMat grad,
GpuMat angleOfs,
Size paddingTL,
Size paddingBR) |
void |
computeGradient(Mat img,
Mat grad,
Mat angleOfs) |
void |
computeGradient(Mat img,
Mat grad,
Mat angleOfs,
Size paddingTL,
Size paddingBR)
\brief Computes gradients and quantized gradient orientations.
|
void |
computeGradient(UMat img,
UMat grad,
UMat angleOfs) |
void |
computeGradient(UMat img,
UMat grad,
UMat angleOfs,
Size paddingTL,
Size paddingBR) |
void |
copyTo(HOGDescriptor c)
\brief clones the HOGDescriptor
|
int |
derivAperture()
not documented
|
HOGDescriptor |
derivAperture(int setter) |
void |
detect(GpuMat img,
PointVector foundLocations) |
void |
detect(GpuMat img,
PointVector foundLocations,
double[] weights) |
void |
detect(GpuMat img,
PointVector foundLocations,
double[] weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(GpuMat img,
PointVector foundLocations,
DoubleBuffer weights) |
void |
detect(GpuMat img,
PointVector foundLocations,
DoubleBuffer weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(GpuMat img,
PointVector foundLocations,
DoublePointer weights) |
void |
detect(GpuMat img,
PointVector foundLocations,
DoublePointer weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(GpuMat img,
PointVector foundLocations,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(Mat img,
PointVector foundLocations) |
void |
detect(Mat img,
PointVector foundLocations,
double[] weights) |
void |
detect(Mat img,
PointVector foundLocations,
double[] weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(Mat img,
PointVector foundLocations,
DoubleBuffer weights) |
void |
detect(Mat img,
PointVector foundLocations,
DoubleBuffer weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(Mat img,
PointVector foundLocations,
DoublePointer weights) |
void |
detect(Mat img,
PointVector foundLocations,
DoublePointer weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations)
\brief Performs object detection without a multi-scale window.
|
void |
detect(Mat img,
PointVector foundLocations,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations)
\brief Performs object detection without a multi-scale window.
|
void |
detect(UMat img,
PointVector foundLocations) |
void |
detect(UMat img,
PointVector foundLocations,
double[] weights) |
void |
detect(UMat img,
PointVector foundLocations,
double[] weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(UMat img,
PointVector foundLocations,
DoubleBuffer weights) |
void |
detect(UMat img,
PointVector foundLocations,
DoubleBuffer weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(UMat img,
PointVector foundLocations,
DoublePointer weights) |
void |
detect(UMat img,
PointVector foundLocations,
DoublePointer weights,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detect(UMat img,
PointVector foundLocations,
double hitThreshold,
Size winStride,
Size padding,
PointVector searchLocations) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
double[] foundWeights) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
double[] foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
DoubleBuffer foundWeights) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
DoubleBuffer foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
DoublePointer foundWeights) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
DoublePointer foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(GpuMat img,
RectVector foundLocations,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(Mat img,
RectVector foundLocations) |
void |
detectMultiScale(Mat img,
RectVector foundLocations,
double[] foundWeights) |
void |
detectMultiScale(Mat img,
RectVector foundLocations,
double[] foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(Mat img,
RectVector foundLocations,
DoubleBuffer foundWeights) |
void |
detectMultiScale(Mat img,
RectVector foundLocations,
DoubleBuffer foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(Mat img,
RectVector foundLocations,
DoublePointer foundWeights) |
void |
detectMultiScale(Mat img,
RectVector foundLocations,
DoublePointer foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping)
\brief Detects objects of different sizes in the input image.
|
void |
detectMultiScale(Mat img,
RectVector foundLocations,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping)
\brief Detects objects of different sizes in the input image.
|
void |
detectMultiScale(UMat img,
RectVector foundLocations) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
double[] foundWeights) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
double[] foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
DoubleBuffer foundWeights) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
DoubleBuffer foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
DoublePointer foundWeights) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
DoublePointer foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScale(UMat img,
RectVector foundLocations,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double finalThreshold,
boolean useMeanshiftGrouping) |
void |
detectMultiScaleROI(GpuMat img,
RectVector foundLocations,
DetectionROI locations) |
void |
detectMultiScaleROI(GpuMat img,
RectVector foundLocations,
DetectionROI locations,
double hitThreshold,
int groupThreshold) |
void |
detectMultiScaleROI(Mat img,
RectVector foundLocations,
DetectionROI locations) |
void |
detectMultiScaleROI(Mat img,
RectVector foundLocations,
DetectionROI locations,
double hitThreshold,
int groupThreshold)
\brief evaluate specified ROI and return confidence value for each location in multiple scales
|
void |
detectMultiScaleROI(UMat img,
RectVector foundLocations,
DetectionROI locations) |
void |
detectMultiScaleROI(UMat img,
RectVector foundLocations,
DetectionROI locations,
double hitThreshold,
int groupThreshold) |
void |
detectROI(GpuMat img,
PointVector locations,
PointVector foundLocations,
double[] confidences) |
void |
detectROI(GpuMat img,
PointVector locations,
PointVector foundLocations,
double[] confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(GpuMat img,
PointVector locations,
PointVector foundLocations,
DoubleBuffer confidences) |
void |
detectROI(GpuMat img,
PointVector locations,
PointVector foundLocations,
DoubleBuffer confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(GpuMat img,
PointVector locations,
PointVector foundLocations,
DoublePointer confidences) |
void |
detectROI(GpuMat img,
PointVector locations,
PointVector foundLocations,
DoublePointer confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(Mat img,
PointVector locations,
PointVector foundLocations,
double[] confidences) |
void |
detectROI(Mat img,
PointVector locations,
PointVector foundLocations,
double[] confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(Mat img,
PointVector locations,
PointVector foundLocations,
DoubleBuffer confidences) |
void |
detectROI(Mat img,
PointVector locations,
PointVector foundLocations,
DoubleBuffer confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(Mat img,
PointVector locations,
PointVector foundLocations,
DoublePointer confidences) |
void |
detectROI(Mat img,
PointVector locations,
PointVector foundLocations,
DoublePointer confidences,
double hitThreshold,
Size winStride,
Size padding)
\brief evaluate specified ROI and return confidence value for each location
|
void |
detectROI(UMat img,
PointVector locations,
PointVector foundLocations,
double[] confidences) |
void |
detectROI(UMat img,
PointVector locations,
PointVector foundLocations,
double[] confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(UMat img,
PointVector locations,
PointVector foundLocations,
DoubleBuffer confidences) |
void |
detectROI(UMat img,
PointVector locations,
PointVector foundLocations,
DoubleBuffer confidences,
double hitThreshold,
Size winStride,
Size padding) |
void |
detectROI(UMat img,
PointVector locations,
PointVector foundLocations,
DoublePointer confidences) |
void |
detectROI(UMat img,
PointVector locations,
PointVector foundLocations,
DoublePointer confidences,
double hitThreshold,
Size winStride,
Size padding) |
float |
free_coef()
not documented
|
HOGDescriptor |
free_coef(float setter) |
boolean |
gammaCorrection()
Flag to specify whether the gamma correction preprocessing is required or not.
|
HOGDescriptor |
gammaCorrection(boolean setter) |
static FloatPointer |
getDaimlerPeopleDetector()
\brief Returns coefficients of the classifier trained for people detection (for 48x96 windows).
|
static FloatPointer |
getDefaultPeopleDetector()
\brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
long |
getDescriptorSize()
\brief Returns the number of coefficients required for the classification.
|
double |
getWinSigma()
\brief Returns winSigma value
|
void |
groupRectangles(RectVector rectList,
double[] weights,
int groupThreshold,
double eps) |
void |
groupRectangles(RectVector rectList,
DoubleBuffer weights,
int groupThreshold,
double eps) |
void |
groupRectangles(RectVector rectList,
DoublePointer weights,
int groupThreshold,
double eps)
\brief Groups the object candidate rectangles.
|
int |
histogramNormType()
histogramNormType
|
HOGDescriptor |
histogramNormType(int setter) |
double |
L2HysThreshold()
L2-Hys normalization method shrinkage.
|
HOGDescriptor |
L2HysThreshold(double setter) |
boolean |
load(BytePointer filename) |
boolean |
load(BytePointer filename,
BytePointer objname)
\brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
|
boolean |
load(String filename) |
boolean |
load(String filename,
String objname) |
int |
nbins()
Number of bins used in the calculation of histogram of gradients.
|
HOGDescriptor |
nbins(int setter) |
int |
nlevels()
Maximum number of detection window increases.
|
HOGDescriptor |
nlevels(int setter) |
UMat |
oclSvmDetector()
coefficients for the linear SVM classifier used when OpenCL is enabled
|
HOGDescriptor |
oclSvmDetector(UMat setter) |
HOGDescriptor |
position(long position) |
boolean |
read(FileNode fn)
\brief Reads HOGDescriptor parameters from a cv::FileNode.
|
void |
save(BytePointer filename) |
void |
save(BytePointer filename,
BytePointer objname)
\brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
|
void |
save(String filename) |
void |
save(String filename,
String objname) |
void |
setSVMDetector(GpuMat svmdetector) |
void |
setSVMDetector(Mat svmdetector)
\brief Sets coefficients for the linear SVM classifier.
|
void |
setSVMDetector(UMat svmdetector) |
boolean |
signedGradient()
Indicates signed gradient will be used or not
|
HOGDescriptor |
signedGradient(boolean setter) |
FloatPointer |
svmDetector()
coefficients for the linear SVM classifier.
|
HOGDescriptor |
svmDetector(FloatPointer setter) |
double |
winSigma()
Gaussian smoothing window parameter.
|
HOGDescriptor |
winSigma(double setter) |
Size |
winSize()
Detection window size.
|
HOGDescriptor |
winSize(Size setter) |
void |
write(FileStorage fs,
BytePointer objname)
\brief Stores HOGDescriptor parameters in a cv::FileStorage.
|
void |
write(FileStorage fs,
String objname) |
address, asBuffer, asByteBuffer, availablePhysicalBytes, calloc, capacity, capacity, close, deallocate, deallocate, deallocateReferences, deallocator, deallocator, equals, fill, formatBytes, free, hashCode, isNull, isNull, limit, limit, malloc, maxBytes, maxPhysicalBytes, memchr, memcmp, memcpy, memmove, memset, offsetof, parseBytes, physicalBytes, position, put, realloc, referenceCount, releaseReference, retainReference, setNull, sizeof, toString, totalBytes, totalPhysicalBytes, withDeallocator, zero
public static final int L2Hys
public static final int DEFAULT_NLEVELS
public static final int DESCR_FORMAT_COL_BY_COL
public static final int DESCR_FORMAT_ROW_BY_ROW
public HOGDescriptor(Pointer p)
Pointer.Pointer(Pointer)
.public HOGDescriptor(long size)
Pointer.position(long)
.public HOGDescriptor()
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
public HOGDescriptor(@ByVal Size _winSize, @ByVal Size _blockSize, @ByVal Size _blockStride, @ByVal Size _cellSize, int _nbins, int _derivAperture, double _winSigma, @Cast(value="cv::HOGDescriptor::HistogramNormType") int _histogramNormType, double _L2HysThreshold, @Cast(value="bool") boolean _gammaCorrection, int _nlevels, @Cast(value="bool") boolean _signedGradient)
_winSize
- sets winSize with given value._blockSize
- sets blockSize with given value._blockStride
- sets blockStride with given value._cellSize
- sets cellSize with given value._nbins
- sets nbins with given value._derivAperture
- sets derivAperture with given value._winSigma
- sets winSigma with given value._histogramNormType
- sets histogramNormType with given value._L2HysThreshold
- sets L2HysThreshold with given value._gammaCorrection
- sets gammaCorrection with given value._nlevels
- sets nlevels with given value._signedGradient
- sets signedGradient with given value.public HOGDescriptor(@ByVal Size _winSize, @ByVal Size _blockSize, @ByVal Size _blockStride, @ByVal Size _cellSize, int _nbins)
public HOGDescriptor(@opencv_core.Str BytePointer filename)
filename
- The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.public HOGDescriptor(@opencv_core.Str String filename)
public HOGDescriptor(@Const @ByRef HOGDescriptor d)
d
- the HOGDescriptor which cloned to create a new one.public HOGDescriptor position(long position)
@Cast(value="size_t") public long getDescriptorSize()
@Cast(value="bool") public boolean checkDetectorSize()
public double getWinSigma()
public void setSVMDetector(@ByVal Mat svmdetector)
svmdetector
- coefficients for the linear SVM classifier.@Cast(value="bool") public boolean read(@ByRef FileNode fn)
fn
- File nodepublic void write(@ByRef FileStorage fs, @opencv_core.Str BytePointer objname)
fs
- File storageobjname
- Object namepublic void write(@ByRef FileStorage fs, @opencv_core.Str String objname)
@Cast(value="bool") public boolean load(@opencv_core.Str BytePointer filename, @opencv_core.Str BytePointer objname)
filename
- Path of the file to read.objname
- The optional name of the node to read (if empty, the first top-level node will be used).@Cast(value="bool") public boolean load(@opencv_core.Str BytePointer filename)
@Cast(value="bool") public boolean load(@opencv_core.Str String filename, @opencv_core.Str String objname)
@Cast(value="bool") public boolean load(@opencv_core.Str String filename)
public void save(@opencv_core.Str BytePointer filename, @opencv_core.Str BytePointer objname)
filename
- File nameobjname
- Object namepublic void save(@opencv_core.Str BytePointer filename)
public void save(@opencv_core.Str String filename, @opencv_core.Str String objname)
public void save(@opencv_core.Str String filename)
public void copyTo(@ByRef HOGDescriptor c)
c
- cloned HOGDescriptorpublic void compute(@ByVal Mat img, @StdVector FloatPointer descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
img
- Matrix of the type CV_8U containing an image where HOG features will be calculated.descriptors
- Matrix of the type CV_32FwinStride
- Window stride. It must be a multiple of block stride.padding
- Paddinglocations
- Vector of Pointpublic void compute(@ByVal Mat img, @StdVector FloatPointer descriptors)
public void compute(@ByVal Mat img, @StdVector FloatBuffer descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal Mat img, @StdVector FloatBuffer descriptors)
public void compute(@ByVal Mat img, @StdVector float[] descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal Mat img, @StdVector float[] descriptors)
public void compute(@ByVal UMat img, @StdVector FloatPointer descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal UMat img, @StdVector FloatPointer descriptors)
public void compute(@ByVal UMat img, @StdVector FloatBuffer descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal UMat img, @StdVector FloatBuffer descriptors)
public void compute(@ByVal UMat img, @StdVector float[] descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal UMat img, @StdVector float[] descriptors)
public void compute(@ByVal GpuMat img, @StdVector FloatPointer descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal GpuMat img, @StdVector FloatPointer descriptors)
public void compute(@ByVal GpuMat img, @StdVector FloatBuffer descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal GpuMat img, @StdVector FloatBuffer descriptors)
public void compute(@ByVal GpuMat img, @StdVector float[] descriptors, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector locations)
public void compute(@ByVal GpuMat img, @StdVector float[] descriptors)
public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, @StdVector DoublePointer weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
img
- Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.foundLocations
- Vector of point where each point contains left-top corner point of detected object boundaries.weights
- Vector that will contain confidence values for each detected object.hitThreshold
- Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.winStride
- Window stride. It must be a multiple of block stride.padding
- PaddingsearchLocations
- Vector of Point includes set of requested locations to be evaluated.public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, @StdVector DoublePointer weights)
public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, @StdVector DoubleBuffer weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, @StdVector DoubleBuffer weights)
public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, @StdVector double[] weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, @StdVector double[] weights)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, @StdVector DoublePointer weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, @StdVector DoublePointer weights)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, @StdVector DoubleBuffer weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, @StdVector DoubleBuffer weights)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, @StdVector double[] weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, @StdVector double[] weights)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, @StdVector DoublePointer weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, @StdVector DoublePointer weights)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, @StdVector DoubleBuffer weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, @StdVector DoubleBuffer weights)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, @StdVector double[] weights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, @StdVector double[] weights)
public void detect(@ByVal Mat img, @ByRef PointVector foundLocations, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
img
- Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.foundLocations
- Vector of point where each point contains left-top corner point of detected object boundaries.hitThreshold
- Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.winStride
- Window stride. It must be a multiple of block stride.padding
- PaddingsearchLocations
- Vector of Point includes locations to search.public void detect(@ByVal Mat img, @ByRef PointVector foundLocations)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal UMat img, @ByRef PointVector foundLocations)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, @Const @ByRef(nullValue="std::vector<cv::Point>()") PointVector searchLocations)
public void detect(@ByVal GpuMat img, @ByRef PointVector foundLocations)
public void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector DoublePointer foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
img
- Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.foundLocations
- Vector of rectangles where each rectangle contains the detected object.foundWeights
- Vector that will contain confidence values for each detected object.hitThreshold
- Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.winStride
- Window stride. It must be a multiple of block stride.padding
- Paddingscale
- Coefficient of the detection window increase.finalThreshold
- Final thresholduseMeanshiftGrouping
- indicates grouping algorithmpublic void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector DoublePointer foundWeights)
public void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector DoubleBuffer foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector DoubleBuffer foundWeights)
public void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector double[] foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector double[] foundWeights)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector DoublePointer foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector DoublePointer foundWeights)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector DoubleBuffer foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector DoubleBuffer foundWeights)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector double[] foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector double[] foundWeights)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector DoublePointer foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector DoublePointer foundWeights)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector DoubleBuffer foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector DoubleBuffer foundWeights)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector double[] foundWeights, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector double[] foundWeights)
public void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
img
- Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.foundLocations
- Vector of rectangles where each rectangle contains the detected object.hitThreshold
- Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.winStride
- Window stride. It must be a multiple of block stride.padding
- Paddingscale
- Coefficient of the detection window increase.finalThreshold
- Final thresholduseMeanshiftGrouping
- indicates grouping algorithmpublic void detectMultiScale(@ByVal Mat img, @ByRef RectVector foundLocations)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal UMat img, @ByRef RectVector foundLocations)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding, double scale, double finalThreshold, @Cast(value="bool") boolean useMeanshiftGrouping)
public void detectMultiScale(@ByVal GpuMat img, @ByRef RectVector foundLocations)
public void computeGradient(@ByVal Mat img, @ByVal Mat grad, @ByVal Mat angleOfs, @ByVal(nullValue="cv::Size()") Size paddingTL, @ByVal(nullValue="cv::Size()") Size paddingBR)
img
- Matrix contains the image to be computedgrad
- Matrix of type CV_32FC2 contains computed gradientsangleOfs
- Matrix of type CV_8UC2 contains quantized gradient orientationspaddingTL
- Padding from top-leftpaddingBR
- Padding from bottom-rightpublic void computeGradient(@ByVal UMat img, @ByVal UMat grad, @ByVal UMat angleOfs, @ByVal(nullValue="cv::Size()") Size paddingTL, @ByVal(nullValue="cv::Size()") Size paddingBR)
public void computeGradient(@ByVal UMat img, @ByVal UMat grad, @ByVal UMat angleOfs)
public void computeGradient(@ByVal GpuMat img, @ByVal GpuMat grad, @ByVal GpuMat angleOfs, @ByVal(nullValue="cv::Size()") Size paddingTL, @ByVal(nullValue="cv::Size()") Size paddingBR)
public void computeGradient(@ByVal GpuMat img, @ByVal GpuMat grad, @ByVal GpuMat angleOfs)
@StdVector public static FloatPointer getDefaultPeopleDetector()
@StdVector public static FloatPointer getDaimlerPeopleDetector()
@ByRef public Size winSize()
public HOGDescriptor winSize(Size setter)
@ByRef public Size blockSize()
public HOGDescriptor blockSize(Size setter)
@ByRef public Size blockStride()
public HOGDescriptor blockStride(Size setter)
public HOGDescriptor cellSize(Size setter)
public int nbins()
public HOGDescriptor nbins(int setter)
public int derivAperture()
public HOGDescriptor derivAperture(int setter)
public double winSigma()
public HOGDescriptor winSigma(double setter)
@Cast(value="cv::HOGDescriptor::HistogramNormType") public int histogramNormType()
public HOGDescriptor histogramNormType(int setter)
public double L2HysThreshold()
public HOGDescriptor L2HysThreshold(double setter)
@Cast(value="bool") public boolean gammaCorrection()
public HOGDescriptor gammaCorrection(boolean setter)
@StdVector public FloatPointer svmDetector()
public HOGDescriptor svmDetector(FloatPointer setter)
@ByRef public UMat oclSvmDetector()
public HOGDescriptor oclSvmDetector(UMat setter)
public float free_coef()
public HOGDescriptor free_coef(float setter)
public int nlevels()
public HOGDescriptor nlevels(int setter)
@Cast(value="bool") public boolean signedGradient()
public HOGDescriptor signedGradient(boolean setter)
public void detectROI(@ByVal Mat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoublePointer confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
img
- Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.locations
- Vector of PointfoundLocations
- Vector of Point where each Point is detected object's top-left point.confidences
- confidenceshitThreshold
- Threshold for the distance between features and SVM classifying plane. Usually
it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if
the free coefficient is omitted (which is allowed), you can specify it manually herewinStride
- winStridepadding
- paddingpublic void detectROI(@ByVal Mat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoublePointer confidences)
public void detectROI(@ByVal Mat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoubleBuffer confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal Mat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoubleBuffer confidences)
public void detectROI(@ByVal Mat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector double[] confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal Mat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector double[] confidences)
public void detectROI(@ByVal UMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoublePointer confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal UMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoublePointer confidences)
public void detectROI(@ByVal UMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoubleBuffer confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal UMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoubleBuffer confidences)
public void detectROI(@ByVal UMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector double[] confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal UMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector double[] confidences)
public void detectROI(@ByVal GpuMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoublePointer confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal GpuMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoublePointer confidences)
public void detectROI(@ByVal GpuMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoubleBuffer confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal GpuMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector DoubleBuffer confidences)
public void detectROI(@ByVal GpuMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector double[] confidences, double hitThreshold, @ByVal(nullValue="cv::Size()") Size winStride, @ByVal(nullValue="cv::Size()") Size padding)
public void detectROI(@ByVal GpuMat img, @Const @ByRef PointVector locations, @ByRef PointVector foundLocations, @StdVector double[] confidences)
public void detectMultiScaleROI(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector DetectionROI locations, double hitThreshold, int groupThreshold)
img
- Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.foundLocations
- Vector of rectangles where each rectangle contains the detected object.locations
- Vector of DetectionROIhitThreshold
- Threshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.groupThreshold
- Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.public void detectMultiScaleROI(@ByVal Mat img, @ByRef RectVector foundLocations, @StdVector DetectionROI locations)
public void detectMultiScaleROI(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector DetectionROI locations, double hitThreshold, int groupThreshold)
public void detectMultiScaleROI(@ByVal UMat img, @ByRef RectVector foundLocations, @StdVector DetectionROI locations)
public void detectMultiScaleROI(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector DetectionROI locations, double hitThreshold, int groupThreshold)
public void detectMultiScaleROI(@ByVal GpuMat img, @ByRef RectVector foundLocations, @StdVector DetectionROI locations)
public void groupRectangles(@ByRef RectVector rectList, @StdVector DoublePointer weights, int groupThreshold, double eps)
rectList
- Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)weights
- Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)groupThreshold
- Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.eps
- Relative difference between sides of the rectangles to merge them into a group.public void groupRectangles(@ByRef RectVector rectList, @StdVector DoubleBuffer weights, int groupThreshold, double eps)
public void groupRectangles(@ByRef RectVector rectList, @StdVector double[] weights, int groupThreshold, double eps)
Copyright © 2020. All rights reserved.