@Namespace(value="cv") @NoOffset @Properties(inherit=opencv_core.class) public class PCA extends Pointer
The class is used to calculate a special basis for a set of vectors. The basis will consist of eigenvectors of the covariance matrix calculated from the input set of vectors. The class %PCA can also transform vectors to/from the new coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and any linear combination of such vectors) can be quite accurately approximated by taking its first few components, corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that you calculate a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected vector's coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See http://en.wikipedia.org/wiki/Principal_component_analysis
The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector) that is used to calculate PCA. The second function stores another "test" set of vectors (a row per vector). First, these vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and printed for each vector. :
{.cpp}
using namespace cv;
PCA compressPCA(const Mat& pcaset, int maxComponents,
const Mat& testset, Mat& compressed)
{
PCA pca(pcaset, // pass the data
Mat(), // we do not have a pre-computed mean vector,
// so let the PCA engine to compute it
PCA::DATA_AS_ROW, // indicate that the vectors
// are stored as matrix rows
// (use PCA::DATA_AS_COL if the vectors are
// the matrix columns)
maxComponents // specify, how many principal components to retain
);
// if there is no test data, just return the computed basis, ready-to-use
if( !testset.data )
return pca;
CV_Assert( testset.cols == pcaset.cols );
compressed.create(testset.rows, maxComponents, testset.type());
Mat reconstructed;
for( int i = 0; i < testset.rows; i++ )
{
Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
// compress the vector, the result will be stored
// in the i-th row of the output matrix
pca.project(vec, coeffs);
// and then reconstruct it
pca.backProject(coeffs, reconstructed);
// and measure the error
printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
}
return pca;
}
calcCovarMatrix, mulTransposed, SVD, dft, dct
Pointer.CustomDeallocator, Pointer.Deallocator, Pointer.NativeDeallocator, Pointer.ReferenceCounter
Modifier and Type | Field and Description |
---|---|
static int |
DATA_AS_COL
enum cv::PCA::Flags
|
static int |
DATA_AS_ROW
enum cv::PCA::Flags
|
static int |
USE_AVG
enum cv::PCA::Flags
|
Constructor and Description |
---|
PCA()
\brief default constructor
|
PCA(GpuMat data,
GpuMat mean,
int flags) |
PCA(GpuMat data,
GpuMat mean,
int flags,
double retainedVariance) |
PCA(GpuMat data,
GpuMat mean,
int flags,
int maxComponents) |
PCA(long size)
Native array allocator.
|
PCA(Mat data,
Mat mean,
int flags) |
PCA(Mat data,
Mat mean,
int flags,
double retainedVariance)
\overload
|
PCA(Mat data,
Mat mean,
int flags,
int maxComponents)
\overload
|
PCA(Pointer p)
Pointer cast constructor.
|
PCA(UMat data,
UMat mean,
int flags) |
PCA(UMat data,
UMat mean,
int flags,
double retainedVariance) |
PCA(UMat data,
UMat mean,
int flags,
int maxComponents) |
Modifier and Type | Method and Description |
---|---|
PCA |
apply(GpuMat data,
GpuMat mean,
int flags) |
PCA |
apply(GpuMat data,
GpuMat mean,
int flags,
double retainedVariance) |
PCA |
apply(GpuMat data,
GpuMat mean,
int flags,
int maxComponents) |
PCA |
apply(Mat data,
Mat mean,
int flags) |
PCA |
apply(Mat data,
Mat mean,
int flags,
double retainedVariance)
\overload
|
PCA |
apply(Mat data,
Mat mean,
int flags,
int maxComponents)
\brief performs %PCA
|
PCA |
apply(UMat data,
UMat mean,
int flags) |
PCA |
apply(UMat data,
UMat mean,
int flags,
double retainedVariance) |
PCA |
apply(UMat data,
UMat mean,
int flags,
int maxComponents) |
Mat |
backProject(GpuMat vec) |
void |
backProject(GpuMat vec,
GpuMat result) |
Mat |
backProject(Mat vec)
\brief Reconstructs vectors from their PC projections.
|
void |
backProject(Mat vec,
Mat result)
\overload
|
Mat |
backProject(UMat vec) |
void |
backProject(UMat vec,
UMat result) |
Mat |
eigenvalues()
eigenvalues of the covariation matrix
|
PCA |
eigenvalues(Mat setter) |
Mat |
eigenvectors()
eigenvectors of the covariation matrix
|
PCA |
eigenvectors(Mat setter) |
Mat |
mean()
mean value subtracted before the projection and added after the back projection
|
PCA |
mean(Mat setter) |
PCA |
position(long position) |
Mat |
project(GpuMat vec) |
void |
project(GpuMat vec,
GpuMat result) |
Mat |
project(Mat vec)
\brief Projects vector(s) to the principal component subspace.
|
void |
project(Mat vec,
Mat result)
\overload
|
Mat |
project(UMat vec) |
void |
project(UMat vec,
UMat result) |
void |
read(FileNode fn)
\brief load PCA objects
|
void |
write(FileStorage fs)
\brief write PCA objects
|
address, asBuffer, asByteBuffer, availablePhysicalBytes, calloc, capacity, capacity, close, deallocate, deallocate, deallocateReferences, deallocator, deallocator, equals, fill, formatBytes, free, hashCode, isNull, isNull, limit, limit, malloc, maxBytes, maxPhysicalBytes, memchr, memcmp, memcpy, memmove, memset, offsetof, parseBytes, physicalBytes, position, put, realloc, referenceCount, releaseReference, retainReference, setNull, sizeof, toString, totalBytes, totalPhysicalBytes, withDeallocator, zero
public static final int DATA_AS_ROW
public static final int DATA_AS_COL
public static final int USE_AVG
public PCA(Pointer p)
Pointer.Pointer(Pointer)
.public PCA(long size)
Pointer.position(long)
.public PCA()
The default constructor initializes an empty %PCA structure. The other constructors initialize the structure and call PCA::operator()().
public PCA(@ByVal Mat data, @ByVal Mat mean, int flags, int maxComponents)
data
- input samples stored as matrix rows or matrix columns.mean
- optional mean value; if the matrix is empty (\c noArray()),
the mean is computed from the data.flags
- operation flags; currently the parameter is only used to
specify the data layout (PCA::Flags)maxComponents
- maximum number of components that %PCA should
retain; by default, all the components are retained.public PCA(@ByVal Mat data, @ByVal Mat mean, int flags, double retainedVariance)
data
- input samples stored as matrix rows or matrix columns.mean
- optional mean value; if the matrix is empty (noArray()),
the mean is computed from the data.flags
- operation flags; currently the parameter is only used to
specify the data layout (PCA::Flags)retainedVariance
- Percentage of variance that PCA should retain.
Using this parameter will let the PCA decided how many components to
retain but it will always keep at least 2.@ByRef @Name(value="operator ()") public PCA apply(@ByVal Mat data, @ByVal Mat mean, int flags, int maxComponents)
The operator performs %PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets. That is, if the structure has been previously used with another dataset, the existing internal data is reclaimed and the new \ref eigenvalues, \ref eigenvectors and \ref mean are allocated and computed.
The computed \ref eigenvalues are sorted from the largest to the smallest and the corresponding \ref eigenvectors are stored as eigenvectors rows.
data
- input samples stored as the matrix rows or as the matrix
columns.mean
- optional mean value; if the matrix is empty (noArray()),
the mean is computed from the data.flags
- operation flags; currently the parameter is only used to
specify the data layout. (Flags)maxComponents
- maximum number of components that PCA should
retain; by default, all the components are retained.@ByRef @Name(value="operator ()") public PCA apply(@ByVal Mat data, @ByVal Mat mean, int flags)
@ByRef @Name(value="operator ()") public PCA apply(@ByVal UMat data, @ByVal UMat mean, int flags, int maxComponents)
@ByRef @Name(value="operator ()") public PCA apply(@ByVal UMat data, @ByVal UMat mean, int flags)
@ByRef @Name(value="operator ()") public PCA apply(@ByVal GpuMat data, @ByVal GpuMat mean, int flags, int maxComponents)
@ByRef @Name(value="operator ()") public PCA apply(@ByVal GpuMat data, @ByVal GpuMat mean, int flags)
@ByRef @Name(value="operator ()") public PCA apply(@ByVal Mat data, @ByVal Mat mean, int flags, double retainedVariance)
data
- input samples stored as the matrix rows or as the matrix
columns.mean
- optional mean value; if the matrix is empty (noArray()),
the mean is computed from the data.flags
- operation flags; currently the parameter is only used to
specify the data layout. (PCA::Flags)retainedVariance
- Percentage of variance that %PCA should retain.
Using this parameter will let the %PCA decided how many components to
retain but it will always keep at least 2.@ByRef @Name(value="operator ()") public PCA apply(@ByVal UMat data, @ByVal UMat mean, int flags, double retainedVariance)
@ByRef @Name(value="operator ()") public PCA apply(@ByVal GpuMat data, @ByVal GpuMat mean, int flags, double retainedVariance)
@ByVal public Mat project(@ByVal Mat vec)
The methods project one or more vectors to the principal component subspace, where each vector projection is represented by coefficients in the principal component basis. The first form of the method returns the matrix that the second form writes to the result. So the first form can be used as a part of expression while the second form can be more efficient in a processing loop.
vec
- input vector(s); must have the same dimensionality and the
same layout as the input data used at %PCA phase, that is, if
DATA_AS_ROW are specified, then vec.cols==data.cols
(vector dimensionality) and vec.rows
is the number of vectors to
project, and the same is true for the PCA::DATA_AS_COL case.public void project(@ByVal Mat vec, @ByVal Mat result)
vec
- input vector(s); must have the same dimensionality and the
same layout as the input data used at PCA phase, that is, if
DATA_AS_ROW are specified, then vec.cols==data.cols
(vector dimensionality) and vec.rows
is the number of vectors to
project, and the same is true for the PCA::DATA_AS_COL case.result
- output vectors; in case of PCA::DATA_AS_COL, the
output matrix has as many columns as the number of input vectors, this
means that result.cols==vec.cols
and the number of rows match the
number of principal components (for example, maxComponents
parameter
passed to the constructor).@ByVal public Mat backProject(@ByVal Mat vec)
The methods are inverse operations to PCA::project. They take PC coordinates of projected vectors and reconstruct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are different from the originals. But typically, the difference is small if the number of components is large enough (but still much smaller than the original vector dimensionality). As a result, PCA is used.
vec
- coordinates of the vectors in the principal component
subspace, the layout and size are the same as of PCA::project output
vectors.public void backProject(@ByVal Mat vec, @ByVal Mat result)
vec
- coordinates of the vectors in the principal component
subspace, the layout and size are the same as of PCA::project output
vectors.result
- reconstructed vectors; the layout and size are the same as
of PCA::project input vectors.public void write(@ByRef FileStorage fs)
Writes \ref eigenvalues \ref eigenvectors and \ref mean to specified FileStorage
public void read(@Const @ByRef FileNode fn)
Loads \ref eigenvalues \ref eigenvectors and \ref mean from specified FileNode
@ByRef public Mat mean()
Copyright © 2020. All rights reserved.