public class opencv_photo extends opencv_photo
Modifier and Type | Field and Description |
---|---|
static int |
INPAINT_NS
enum cv::
|
static int |
INPAINT_TELEA
enum cv::
|
static int |
LDR_SIZE
enum cv::
|
static int |
MIXED_CLONE
enum cv::
|
static int |
MONOCHROME_TRANSFER
enum cv::
|
static int |
NORMAL_CLONE
enum cv::
|
static int |
NORMCONV_FILTER
enum cv::
|
static int |
RECURS_FILTER
enum cv::
|
Constructor and Description |
---|
opencv_photo() |
Modifier and Type | Method and Description |
---|---|
static void |
colorChange(GpuMat src,
GpuMat mask,
GpuMat dst) |
static void |
colorChange(GpuMat src,
GpuMat mask,
GpuMat dst,
float red_mul,
float green_mul,
float blue_mul) |
static void |
colorChange(Mat src,
Mat mask,
Mat dst) |
static void |
colorChange(Mat src,
Mat mask,
Mat dst,
float red_mul,
float green_mul,
float blue_mul)
\brief Given an original color image, two differently colored versions of this image can be mixed
seamlessly.
|
static void |
colorChange(UMat src,
UMat mask,
UMat dst) |
static void |
colorChange(UMat src,
UMat mask,
UMat dst,
float red_mul,
float green_mul,
float blue_mul) |
static AlignMTB |
createAlignMTB() |
static AlignMTB |
createAlignMTB(int max_bits,
int exclude_range,
boolean cut)
\brief Creates AlignMTB object
|
static CalibrateDebevec |
createCalibrateDebevec() |
static CalibrateDebevec |
createCalibrateDebevec(int samples,
float lambda,
boolean random)
\brief Creates CalibrateDebevec object
|
static CalibrateRobertson |
createCalibrateRobertson() |
static CalibrateRobertson |
createCalibrateRobertson(int max_iter,
float threshold)
\brief Creates CalibrateRobertson object
|
static MergeDebevec |
createMergeDebevec()
\brief Creates MergeDebevec object
|
static MergeMertens |
createMergeMertens() |
static MergeMertens |
createMergeMertens(float contrast_weight,
float saturation_weight,
float exposure_weight)
\brief Creates MergeMertens object
|
static MergeRobertson |
createMergeRobertson()
\brief Creates MergeRobertson object
|
static Tonemap |
createTonemap() |
static Tonemap |
createTonemap(float gamma)
\brief Creates simple linear mapper with gamma correction
|
static TonemapDrago |
createTonemapDrago() |
static TonemapDrago |
createTonemapDrago(float gamma,
float saturation,
float bias)
\brief Creates TonemapDrago object
|
static TonemapMantiuk |
createTonemapMantiuk() |
static TonemapMantiuk |
createTonemapMantiuk(float gamma,
float scale,
float saturation)
\brief Creates TonemapMantiuk object
|
static TonemapReinhard |
createTonemapReinhard() |
static TonemapReinhard |
createTonemapReinhard(float gamma,
float intensity,
float light_adapt,
float color_adapt)
\brief Creates TonemapReinhard object
|
static void |
decolor(GpuMat src,
GpuMat grayscale,
GpuMat color_boost) |
static void |
decolor(Mat src,
Mat grayscale,
Mat color_boost)
\} photo_hdr
|
static void |
decolor(UMat src,
UMat grayscale,
UMat color_boost) |
static void |
denoise_TVL1(MatVector observations,
Mat result) |
static void |
denoise_TVL1(MatVector observations,
Mat result,
double lambda,
int niters)
\brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
finding a function to minimize some functional).
|
static void |
detailEnhance(GpuMat src,
GpuMat dst) |
static void |
detailEnhance(GpuMat src,
GpuMat dst,
float sigma_s,
float sigma_r) |
static void |
detailEnhance(Mat src,
Mat dst) |
static void |
detailEnhance(Mat src,
Mat dst,
float sigma_s,
float sigma_r)
\brief This filter enhances the details of a particular image.
|
static void |
detailEnhance(UMat src,
UMat dst) |
static void |
detailEnhance(UMat src,
UMat dst,
float sigma_s,
float sigma_r) |
static void |
edgePreservingFilter(GpuMat src,
GpuMat dst) |
static void |
edgePreservingFilter(GpuMat src,
GpuMat dst,
int flags,
float sigma_s,
float sigma_r) |
static void |
edgePreservingFilter(Mat src,
Mat dst) |
static void |
edgePreservingFilter(Mat src,
Mat dst,
int flags,
float sigma_s,
float sigma_r)
\brief Filtering is the fundamental operation in image and video processing.
|
static void |
edgePreservingFilter(UMat src,
UMat dst) |
static void |
edgePreservingFilter(UMat src,
UMat dst,
int flags,
float sigma_s,
float sigma_r) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
float h) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
float[] h) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
float[] h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
FloatBuffer h) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
FloatBuffer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
float h,
int search_window,
int block_size,
Stream stream) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
FloatPointer h) |
static void |
fastNlMeansDenoising(GpuMat src,
GpuMat dst,
FloatPointer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
float h) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
float[] h) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
float[] h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
FloatBuffer h) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
FloatBuffer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
float h,
int templateWindowSize,
int searchWindowSize)
\} photo_inpaint
|
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
float h,
int search_window,
int block_size,
Stream stream)
\brief Perform image denoising using Non-local Means Denoising algorithm
|
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
FloatPointer h) |
static void |
fastNlMeansDenoising(Mat src,
Mat dst,
FloatPointer h,
int templateWindowSize,
int searchWindowSize,
int normType)
\brief Perform image denoising using Non-local Means Denoising algorithm
|
static void |
fastNlMeansDenoising(UMat src,
UMat dst) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
float h) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
float[] h) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
float[] h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
FloatBuffer h) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
FloatBuffer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
float h,
int search_window,
int block_size,
Stream stream) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
FloatPointer h) |
static void |
fastNlMeansDenoising(UMat src,
UMat dst,
FloatPointer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingColored(GpuMat src,
GpuMat dst) |
static void |
fastNlMeansDenoisingColored(GpuMat src,
GpuMat dst,
float h_luminance,
float photo_render) |
static void |
fastNlMeansDenoisingColored(GpuMat src,
GpuMat dst,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColored(GpuMat src,
GpuMat dst,
float h_luminance,
float photo_render,
int search_window,
int block_size,
Stream stream) |
static void |
fastNlMeansDenoisingColored(Mat src,
Mat dst) |
static void |
fastNlMeansDenoisingColored(Mat src,
Mat dst,
float h_luminance,
float photo_render) |
static void |
fastNlMeansDenoisingColored(Mat src,
Mat dst,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize)
\brief Modification of fastNlMeansDenoising function for colored images
|
static void |
fastNlMeansDenoisingColored(Mat src,
Mat dst,
float h_luminance,
float photo_render,
int search_window,
int block_size,
Stream stream)
\brief Modification of fastNlMeansDenoising function for colored images
|
static void |
fastNlMeansDenoisingColored(UMat src,
UMat dst) |
static void |
fastNlMeansDenoisingColored(UMat src,
UMat dst,
float h_luminance,
float photo_render) |
static void |
fastNlMeansDenoisingColored(UMat src,
UMat dst,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColored(UMat src,
UMat dst,
float h_luminance,
float photo_render,
int search_window,
int block_size,
Stream stream) |
static void |
fastNlMeansDenoisingColoredMulti(GpuMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(GpuMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(GpuMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(GpuMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(GpuMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(GpuMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(MatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(MatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(MatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(MatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize)
\brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
|
static void |
fastNlMeansDenoisingColoredMulti(MatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(MatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(UMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(UMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(UMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(UMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(UMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingColoredMulti(UMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
float hColor,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float[] h) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float[] h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float[] h) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float[] h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float[] h) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float[] h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(GpuMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatPointer h) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatPointer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize)
\brief Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time.
|
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatPointer h) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatPointer h,
int templateWindowSize,
int searchWindowSize,
int normType)
\brief Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time.
|
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatPointer h) |
static void |
fastNlMeansDenoisingMulti(MatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatPointer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatBuffer h) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatBuffer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
GpuMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatBuffer h) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatBuffer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
Mat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatBuffer h) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
FloatBuffer h,
int templateWindowSize,
int searchWindowSize,
int normType) |
static void |
fastNlMeansDenoisingMulti(UMatVector srcImgs,
UMat dst,
int imgToDenoiseIndex,
int temporalWindowSize,
float h,
int templateWindowSize,
int searchWindowSize) |
static void |
illuminationChange(GpuMat src,
GpuMat mask,
GpuMat dst) |
static void |
illuminationChange(GpuMat src,
GpuMat mask,
GpuMat dst,
float alpha,
float beta) |
static void |
illuminationChange(Mat src,
Mat mask,
Mat dst) |
static void |
illuminationChange(Mat src,
Mat mask,
Mat dst,
float alpha,
float beta)
\brief Applying an appropriate non-linear transformation to the gradient field inside the selection and
then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
|
static void |
illuminationChange(UMat src,
UMat mask,
UMat dst) |
static void |
illuminationChange(UMat src,
UMat mask,
UMat dst,
float alpha,
float beta) |
static void |
inpaint(GpuMat src,
GpuMat inpaintMask,
GpuMat dst,
double inpaintRadius,
int flags) |
static void |
inpaint(Mat src,
Mat inpaintMask,
Mat dst,
double inpaintRadius,
int flags)
\brief Restores the selected region in an image using the region neighborhood.
|
static void |
inpaint(UMat src,
UMat inpaintMask,
UMat dst,
double inpaintRadius,
int flags) |
static void |
nonLocalMeans(GpuMat src,
GpuMat dst,
float h) |
static void |
nonLocalMeans(GpuMat src,
GpuMat dst,
float h,
int search_window,
int block_size,
int borderMode,
Stream stream) |
static void |
nonLocalMeans(Mat src,
Mat dst,
float h) |
static void |
nonLocalMeans(Mat src,
Mat dst,
float h,
int search_window,
int block_size,
int borderMode,
Stream stream)
\addtogroup photo_denoise
\{
|
static void |
nonLocalMeans(UMat src,
UMat dst,
float h) |
static void |
nonLocalMeans(UMat src,
UMat dst,
float h,
int search_window,
int block_size,
int borderMode,
Stream stream) |
static void |
pencilSketch(GpuMat src,
GpuMat dst1,
GpuMat dst2) |
static void |
pencilSketch(GpuMat src,
GpuMat dst1,
GpuMat dst2,
float sigma_s,
float sigma_r,
float shade_factor) |
static void |
pencilSketch(Mat src,
Mat dst1,
Mat dst2) |
static void |
pencilSketch(Mat src,
Mat dst1,
Mat dst2,
float sigma_s,
float sigma_r,
float shade_factor)
\brief Pencil-like non-photorealistic line drawing
|
static void |
pencilSketch(UMat src,
UMat dst1,
UMat dst2) |
static void |
pencilSketch(UMat src,
UMat dst1,
UMat dst2,
float sigma_s,
float sigma_r,
float shade_factor) |
static void |
seamlessClone(GpuMat src,
GpuMat dst,
GpuMat mask,
Point p,
GpuMat blend,
int flags) |
static void |
seamlessClone(Mat src,
Mat dst,
Mat mask,
Point p,
Mat blend,
int flags)
\brief Image editing tasks concern either global changes (color/intensity corrections, filters,
deformations) or local changes concerned to a selection.
|
static void |
seamlessClone(UMat src,
UMat dst,
UMat mask,
Point p,
UMat blend,
int flags) |
static void |
stylization(GpuMat src,
GpuMat dst) |
static void |
stylization(GpuMat src,
GpuMat dst,
float sigma_s,
float sigma_r) |
static void |
stylization(Mat src,
Mat dst) |
static void |
stylization(Mat src,
Mat dst,
float sigma_s,
float sigma_r)
\brief Stylization aims to produce digital imagery with a wide variety of effects not focused on
photorealism.
|
static void |
stylization(UMat src,
UMat dst) |
static void |
stylization(UMat src,
UMat dst,
float sigma_s,
float sigma_r) |
static void |
textureFlattening(GpuMat src,
GpuMat mask,
GpuMat dst) |
static void |
textureFlattening(GpuMat src,
GpuMat mask,
GpuMat dst,
float low_threshold,
float high_threshold,
int kernel_size) |
static void |
textureFlattening(Mat src,
Mat mask,
Mat dst) |
static void |
textureFlattening(Mat src,
Mat mask,
Mat dst,
float low_threshold,
float high_threshold,
int kernel_size)
\brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
washes out the texture of the selected region, giving its contents a flat aspect.
|
static void |
textureFlattening(UMat src,
UMat mask,
UMat dst) |
static void |
textureFlattening(UMat src,
UMat mask,
UMat dst,
float low_threshold,
float high_threshold,
int kernel_size) |
map
public static final int INPAINT_NS
public static final int INPAINT_TELEA
public static final int LDR_SIZE
public static final int NORMAL_CLONE
public static final int MIXED_CLONE
public static final int MONOCHROME_TRANSFER
public static final int RECURS_FILTER
public static final int NORMCONV_FILTER
@Namespace(value="cv") public static void inpaint(@ByVal Mat src, @ByVal Mat inpaintMask, @ByVal Mat dst, double inpaintRadius, int flags)
src
- Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.inpaintMask
- Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
needs to be inpainted.dst
- Output image with the same size and type as src .inpaintRadius
- Radius of a circular neighborhood of each point inpainted that is considered
by the algorithm.flags
- Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
The function reconstructs the selected image area from the pixel near the area boundary. The
function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
objects from still images or video. See
\note
- An example using the inpainting technique can be found at
opencv_source_code/samples/cpp/inpaint.cpp
- (Python) An example using the inpainting technique can be found at
opencv_source_code/samples/python/inpaint.py
@Namespace(value="cv") public static void inpaint(@ByVal UMat src, @ByVal UMat inpaintMask, @ByVal UMat dst, double inpaintRadius, int flags)
@Namespace(value="cv") public static void inpaint(@ByVal GpuMat src, @ByVal GpuMat inpaintMask, @ByVal GpuMat dst, double inpaintRadius, int flags)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, float h, int templateWindowSize, int searchWindowSize)
\addtogroup photo_denoise \{
/** \brief Perform image denoising using Non-local Means Denoising algorithm
src
- Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.dst
- Output image with the same size and type as src .templateWindowSize
- Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixelssearchWindowSize
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixelsh
- Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise
This function expected to be applied to grayscale images. For colored images look at fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting image to CIELAB colorspace and then separately denoise L and AB components with different h parameter.
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, @StdVector FloatPointer h, int templateWindowSize, int searchWindowSize, int normType)
src
- Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
2-channel, 3-channel or 4-channel image.dst
- Output image with the same size and type as src .templateWindowSize
- Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixelssearchWindowSize
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixelsh
- Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noisenormType
- Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
This function expected to be applied to grayscale images. For colored images look at fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting image to CIELAB colorspace and then separately denoise L and AB components with different h parameter.
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, @StdVector FloatPointer h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, @StdVector FloatBuffer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, @StdVector FloatBuffer h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, @StdVector float[] h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, @StdVector float[] h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, @StdVector FloatPointer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, @StdVector FloatPointer h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, @StdVector FloatBuffer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, @StdVector FloatBuffer h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, @StdVector float[] h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, @StdVector float[] h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, @StdVector FloatPointer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, @StdVector FloatPointer h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, @StdVector FloatBuffer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, @StdVector FloatBuffer h)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, @StdVector float[] h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, @StdVector float[] h)
@Namespace(value="cv") public static void fastNlMeansDenoisingColored(@ByVal Mat src, @ByVal Mat dst, float h, float hColor, int templateWindowSize, int searchWindowSize)
src
- Input 8-bit 3-channel image.dst
- Output image with the same size and type as src .templateWindowSize
- Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixelssearchWindowSize
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixelsh
- Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noisehColor
- The same as h but for color components. For most images value equals 10
will be enough to remove colored noise and do not distort colors
The function converts image to CIELAB colorspace and then separately denoise L and AB components with given h parameters using fastNlMeansDenoising function.
@Namespace(value="cv") public static void fastNlMeansDenoisingColored(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv") public static void fastNlMeansDenoisingColored(@ByVal UMat src, @ByVal UMat dst, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColored(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv") public static void fastNlMeansDenoisingColored(@ByVal GpuMat src, @ByVal GpuMat dst, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColored(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
srcImgs
- Input 8-bit 1-channel, 2-channel, 3-channel or
4-channel images sequence. All images should have the same type and
size.imgToDenoiseIndex
- Target image to denoise index in srcImgs sequencetemporalWindowSize
- Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.dst
- Output image with the same size and type as srcImgs images.templateWindowSize
- Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixelssearchWindowSize
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixelsh
- Parameter regulating filter strength. Bigger h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatPointer h, int templateWindowSize, int searchWindowSize, int normType)
srcImgs
- Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
2-channel, 3-channel or 4-channel images sequence. All images should
have the same type and size.imgToDenoiseIndex
- Target image to denoise index in srcImgs sequencetemporalWindowSize
- Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.dst
- Output image with the same size and type as srcImgs images.templateWindowSize
- Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixelssearchWindowSize
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixelsh
- Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noisenormType
- Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatPointer h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatBuffer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatBuffer h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector float[] h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector float[] h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatPointer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatPointer h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatBuffer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatBuffer h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector float[] h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector float[] h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatPointer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal MatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatPointer h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatBuffer h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal UMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector FloatBuffer h)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector float[] h, int templateWindowSize, int searchWindowSize, int normType)
@Namespace(value="cv") public static void fastNlMeansDenoisingMulti(@ByVal GpuMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, @StdVector float[] h)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal MatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
srcImgs
- Input 8-bit 3-channel images sequence. All images should have the same type and
size.imgToDenoiseIndex
- Target image to denoise index in srcImgs sequencetemporalWindowSize
- Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.dst
- Output image with the same size and type as srcImgs images.templateWindowSize
- Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixelssearchWindowSize
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixelsh
- Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise.hColor
- The same as h but for color components.
The function converts images to CIELAB colorspace and then separately denoise L and AB components with given h parameters using fastNlMeansDenoisingMulti function.
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal MatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal UMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal UMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal GpuMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal GpuMatVector srcImgs, @ByVal Mat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal MatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal MatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal UMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal UMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal GpuMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal GpuMatVector srcImgs, @ByVal UMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal MatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal MatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal UMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal UMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal GpuMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize)
@Namespace(value="cv") public static void fastNlMeansDenoisingColoredMulti(@ByVal GpuMatVector srcImgs, @ByVal GpuMat dst, int imgToDenoiseIndex, int temporalWindowSize)
@Namespace(value="cv") public static void denoise_TVL1(@Const @ByRef MatVector observations, @ByRef Mat result, double lambda, int niters)
It should be noted, that this implementation was taken from the July 2013 blog entry \cite MA13 , which also contained (slightly more general) ready-to-use source code on Python. Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end of July 2013 and finally it was slightly adapted by later authors.
Although the thorough discussion and justification of the algorithm involved may be found in
\cite ChambolleEtAl, it might make sense to skim over it here, following \cite MA13 . To begin
with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
pixels (it may be seen as set
\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}
for some
m,\;n\in\mathbb{N}
) into \{0,1,\dots,255\}
. We shall denote the noised images as f_i
and with
this view, given some image x
of the same size, we may measure how bad it is by the formula
\[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\]
\|\|\cdot\|\|
here denotes L_2
-norm and as you see, the first addend states that we want our
image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
we want our result to be close to the observations we've got. If we treat x
as a function, this is
exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
observations
- This array should contain one or more noised versions of the image that is to
be restored.result
- Here the denoised image will be stored. There is no need to do pre-allocation of
storage space, as it will be automatically allocated, if necessary.lambda
- Corresponds to \lambda
in the formulas above. As it is enlarged, the smooth
(blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
removed.niters
- Number of iterations that the algorithm will run. Of course, as more iterations as
better, but it is hard to quantitatively refine this statement, so just use the default and
increase it if the results are poor.@Namespace(value="cv") public static void denoise_TVL1(@Const @ByRef MatVector observations, @ByRef Mat result)
@Namespace(value="cv") @opencv_core.Ptr public static Tonemap createTonemap(float gamma)
gamma
- positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
equal to 2.2f is suitable for most displays.
Generally gamma \> 1 brightens the image and gamma \< 1 darkens it.@Namespace(value="cv") @opencv_core.Ptr public static Tonemap createTonemap()
@Namespace(value="cv") @opencv_core.Ptr public static TonemapDrago createTonemapDrago(float gamma, float saturation, float bias)
gamma
- gamma value for gamma correction. See createTonemapsaturation
- positive saturation enhancement value. 1.0 preserves saturation, values greater
than 1 increase saturation and values less than 1 decrease it.bias
- value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
results, default value is 0.85.@Namespace(value="cv") @opencv_core.Ptr public static TonemapDrago createTonemapDrago()
@Namespace(value="cv") @opencv_core.Ptr public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt, float color_adapt)
gamma
- gamma value for gamma correction. See createTonemapintensity
- result intensity in [-8, 8] range. Greater intensity produces brighter results.light_adapt
- light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
value, if 0 it's global, otherwise it's a weighted mean of this two cases.color_adapt
- chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
if 0 adaptation level is the same for each channel.@Namespace(value="cv") @opencv_core.Ptr public static TonemapReinhard createTonemapReinhard()
@Namespace(value="cv") @opencv_core.Ptr public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale, float saturation)
gamma
- gamma value for gamma correction. See createTonemapscale
- contrast scale factor. HVS response is multiplied by this parameter, thus compressing
dynamic range. Values from 0.6 to 0.9 produce best results.saturation
- saturation enhancement value. See createTonemapDrago@Namespace(value="cv") @opencv_core.Ptr public static TonemapMantiuk createTonemapMantiuk()
@Namespace(value="cv") @opencv_core.Ptr public static AlignMTB createAlignMTB(int max_bits, int exclude_range, @Cast(value="bool") boolean cut)
max_bits
- logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
usually good enough (31 and 63 pixels shift respectively).exclude_range
- range for exclusion bitmap that is constructed to suppress noise around the
median value.cut
- if true cuts images, otherwise fills the new regions with zeros.@Namespace(value="cv") @opencv_core.Ptr public static AlignMTB createAlignMTB()
@Namespace(value="cv") @opencv_core.Ptr public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda, @Cast(value="bool") boolean random)
samples
- number of pixel locations to uselambda
- smoothness term weight. Greater values produce smoother results, but can alter the
response.random
- if true sample pixel locations are chosen at random, otherwise they form a
rectangular grid.@Namespace(value="cv") @opencv_core.Ptr public static CalibrateDebevec createCalibrateDebevec()
@Namespace(value="cv") @opencv_core.Ptr public static CalibrateRobertson createCalibrateRobertson(int max_iter, float threshold)
max_iter
- maximal number of Gauss-Seidel solver iterations.threshold
- target difference between results of two successive steps of the minimization.@Namespace(value="cv") @opencv_core.Ptr public static CalibrateRobertson createCalibrateRobertson()
@Namespace(value="cv") @opencv_core.Ptr public static MergeDebevec createMergeDebevec()
@Namespace(value="cv") @opencv_core.Ptr public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight, float exposure_weight)
contrast_weight
- contrast measure weight. See MergeMertens.saturation_weight
- saturation measure weightexposure_weight
- well-exposedness measure weight@Namespace(value="cv") @opencv_core.Ptr public static MergeMertens createMergeMertens()
@Namespace(value="cv") @opencv_core.Ptr public static MergeRobertson createMergeRobertson()
@Namespace(value="cv") public static void decolor(@ByVal Mat src, @ByVal Mat grayscale, @ByVal Mat color_boost)
\addtogroup photo_decolor \{
/** \brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized black-and-white photograph rendering, and in many single channel image processing applications \cite CL12 .
src
- Input 8-bit 3-channel image.grayscale
- Output 8-bit 1-channel image.color_boost
- Output 8-bit 3-channel image.
This function is to be applied on color images.
@Namespace(value="cv") public static void decolor(@ByVal UMat src, @ByVal UMat grayscale, @ByVal UMat color_boost)
@Namespace(value="cv") public static void decolor(@ByVal GpuMat src, @ByVal GpuMat grayscale, @ByVal GpuMat color_boost)
@Namespace(value="cv") public static void seamlessClone(@ByVal Mat src, @ByVal Mat dst, @ByVal Mat mask, @ByVal Point p, @ByVal Mat blend, int flags)
src
- Input 8-bit 3-channel image.dst
- Input 8-bit 3-channel image.mask
- Input 8-bit 1 or 3-channel image.p
- Point in dst image where object is placed.blend
- Output image with the same size and type as dst.flags
- Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER@Namespace(value="cv") public static void seamlessClone(@ByVal UMat src, @ByVal UMat dst, @ByVal UMat mask, @ByVal Point p, @ByVal UMat blend, int flags)
@Namespace(value="cv") public static void seamlessClone(@ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat mask, @ByVal Point p, @ByVal GpuMat blend, int flags)
@Namespace(value="cv") public static void colorChange(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat dst, float red_mul, float green_mul, float blue_mul)
src
- Input 8-bit 3-channel image.mask
- Input 8-bit 1 or 3-channel image.dst
- Output image with the same size and type as src .red_mul
- R-channel multiply factor.green_mul
- G-channel multiply factor.blue_mul
- B-channel multiply factor.
Multiplication factor is between .5 to 2.5.
@Namespace(value="cv") public static void colorChange(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat dst)
@Namespace(value="cv") public static void colorChange(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat dst, float red_mul, float green_mul, float blue_mul)
@Namespace(value="cv") public static void colorChange(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat dst)
@Namespace(value="cv") public static void colorChange(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat dst, float red_mul, float green_mul, float blue_mul)
@Namespace(value="cv") public static void colorChange(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat dst)
@Namespace(value="cv") public static void illuminationChange(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat dst, float alpha, float beta)
src
- Input 8-bit 3-channel image.mask
- Input 8-bit 1 or 3-channel image.dst
- Output image with the same size and type as src.alpha
- Value ranges between 0-2.beta
- Value ranges between 0-2.
This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
@Namespace(value="cv") public static void illuminationChange(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat dst)
@Namespace(value="cv") public static void illuminationChange(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat dst, float alpha, float beta)
@Namespace(value="cv") public static void illuminationChange(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat dst)
@Namespace(value="cv") public static void illuminationChange(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat dst, float alpha, float beta)
@Namespace(value="cv") public static void illuminationChange(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat dst)
@Namespace(value="cv") public static void textureFlattening(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat dst, float low_threshold, float high_threshold, int kernel_size)
src
- Input 8-bit 3-channel image.mask
- Input 8-bit 1 or 3-channel image.dst
- Output image with the same size and type as src.low_threshold
- %Range from 0 to 100.high_threshold
- Value \> 100.kernel_size
- The size of the Sobel kernel to be used.
\note The algorithm assumes that the color of the source image is close to that of the destination. This assumption means that when the colors don't match, the source image color gets tinted toward the color of the destination image.
@Namespace(value="cv") public static void textureFlattening(@ByVal Mat src, @ByVal Mat mask, @ByVal Mat dst)
@Namespace(value="cv") public static void textureFlattening(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat dst, float low_threshold, float high_threshold, int kernel_size)
@Namespace(value="cv") public static void textureFlattening(@ByVal UMat src, @ByVal UMat mask, @ByVal UMat dst)
@Namespace(value="cv") public static void textureFlattening(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat dst, float low_threshold, float high_threshold, int kernel_size)
@Namespace(value="cv") public static void textureFlattening(@ByVal GpuMat src, @ByVal GpuMat mask, @ByVal GpuMat dst)
@Namespace(value="cv") public static void edgePreservingFilter(@ByVal Mat src, @ByVal Mat dst, int flags, float sigma_s, float sigma_r)
src
- Input 8-bit 3-channel image.dst
- Output 8-bit 3-channel image.flags
- Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTERsigma_s
- %Range between 0 to 200.sigma_r
- %Range between 0 to 1.@Namespace(value="cv") public static void edgePreservingFilter(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv") public static void edgePreservingFilter(@ByVal UMat src, @ByVal UMat dst, int flags, float sigma_s, float sigma_r)
@Namespace(value="cv") public static void edgePreservingFilter(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv") public static void edgePreservingFilter(@ByVal GpuMat src, @ByVal GpuMat dst, int flags, float sigma_s, float sigma_r)
@Namespace(value="cv") public static void edgePreservingFilter(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv") public static void detailEnhance(@ByVal Mat src, @ByVal Mat dst, float sigma_s, float sigma_r)
src
- Input 8-bit 3-channel image.dst
- Output image with the same size and type as src.sigma_s
- %Range between 0 to 200.sigma_r
- %Range between 0 to 1.@Namespace(value="cv") public static void detailEnhance(@ByVal Mat src, @ByVal Mat dst)
@Namespace(value="cv") public static void detailEnhance(@ByVal UMat src, @ByVal UMat dst, float sigma_s, float sigma_r)
@Namespace(value="cv") public static void detailEnhance(@ByVal UMat src, @ByVal UMat dst)
@Namespace(value="cv") public static void detailEnhance(@ByVal GpuMat src, @ByVal GpuMat dst, float sigma_s, float sigma_r)
@Namespace(value="cv") public static void detailEnhance(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv") public static void pencilSketch(@ByVal Mat src, @ByVal Mat dst1, @ByVal Mat dst2, float sigma_s, float sigma_r, float shade_factor)
src
- Input 8-bit 3-channel image.dst1
- Output 8-bit 1-channel image.dst2
- Output image with the same size and type as src.sigma_s
- %Range between 0 to 200.sigma_r
- %Range between 0 to 1.shade_factor
- %Range between 0 to 0.1.@Namespace(value="cv") public static void pencilSketch(@ByVal Mat src, @ByVal Mat dst1, @ByVal Mat dst2)
@Namespace(value="cv") public static void pencilSketch(@ByVal UMat src, @ByVal UMat dst1, @ByVal UMat dst2, float sigma_s, float sigma_r, float shade_factor)
@Namespace(value="cv") public static void pencilSketch(@ByVal UMat src, @ByVal UMat dst1, @ByVal UMat dst2)
@Namespace(value="cv") public static void pencilSketch(@ByVal GpuMat src, @ByVal GpuMat dst1, @ByVal GpuMat dst2, float sigma_s, float sigma_r, float shade_factor)
@Namespace(value="cv") public static void pencilSketch(@ByVal GpuMat src, @ByVal GpuMat dst1, @ByVal GpuMat dst2)
@Namespace(value="cv") public static void stylization(@ByVal Mat src, @ByVal Mat dst, float sigma_s, float sigma_r)
src
- Input 8-bit 3-channel image.dst
- Output image with the same size and type as src.sigma_s
- %Range between 0 to 200.sigma_r
- %Range between 0 to 1.@Namespace(value="cv") public static void stylization(@ByVal UMat src, @ByVal UMat dst, float sigma_s, float sigma_r)
@Namespace(value="cv") public static void stylization(@ByVal GpuMat src, @ByVal GpuMat dst, float sigma_s, float sigma_r)
@Namespace(value="cv") public static void stylization(@ByVal GpuMat src, @ByVal GpuMat dst)
@Namespace(value="cv::cuda") public static void nonLocalMeans(@ByVal Mat src, @ByVal Mat dst, float h, int search_window, int block_size, int borderMode, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
/** \brief Performs pure non local means denoising without any simplification, and thus it is not fast.
src
- Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.dst
- Destination image.h
- Filter sigma regulating filter strength for color.search_window
- Size of search window.block_size
- Size of block used for computing weights.borderMode
- Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.stream
- Stream for the asynchronous version.
fastNlMeansDenoising
@Namespace(value="cv::cuda") public static void nonLocalMeans(@ByVal Mat src, @ByVal Mat dst, float h)
@Namespace(value="cv::cuda") public static void nonLocalMeans(@ByVal UMat src, @ByVal UMat dst, float h, int search_window, int block_size, int borderMode, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void nonLocalMeans(@ByVal UMat src, @ByVal UMat dst, float h)
@Namespace(value="cv::cuda") public static void nonLocalMeans(@ByVal GpuMat src, @ByVal GpuMat dst, float h, int search_window, int block_size, int borderMode, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void nonLocalMeans(@ByVal GpuMat src, @ByVal GpuMat dst, float h)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, float h, int search_window, int block_size, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Input 8-bit 1-channel, 2-channel or 3-channel image.dst
- Output image with the same size and type as src .h
- Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noisesearch_window
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixelsblock_size
- Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixelsstream
- Stream for the asynchronous invocations.
This function expected to be applied to grayscale images. For colored images look at FastNonLocalMeansDenoising::labMethod.
fastNlMeansDenoising
@Namespace(value="cv::cuda") public static void fastNlMeansDenoising(@ByVal Mat src, @ByVal Mat dst, float h)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, float h, int search_window, int block_size, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoising(@ByVal UMat src, @ByVal UMat dst, float h)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, float h, int search_window, int block_size, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoising(@ByVal GpuMat src, @ByVal GpuMat dst, float h)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoisingColored(@ByVal Mat src, @ByVal Mat dst, float h_luminance, float photo_render, int search_window, int block_size, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
src
- Input 8-bit 3-channel image.dst
- Output image with the same size and type as src .h_luminance
- Parameter regulating filter strength. Big h value perfectly removes noise but
also removes image details, smaller h value preserves details but also preserves some noisephoto_render
- float The same as h but for color components. For most images value equals 10 will be
enough to remove colored noise and do not distort colorssearch_window
- Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixelsblock_size
- Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixelsstream
- Stream for the asynchronous invocations.
The function converts image to CIELAB colorspace and then separately denoise L and AB components with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
fastNlMeansDenoisingColored
@Namespace(value="cv::cuda") public static void fastNlMeansDenoisingColored(@ByVal Mat src, @ByVal Mat dst, float h_luminance, float photo_render)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoisingColored(@ByVal UMat src, @ByVal UMat dst, float h_luminance, float photo_render, int search_window, int block_size, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoisingColored(@ByVal UMat src, @ByVal UMat dst, float h_luminance, float photo_render)
@Namespace(value="cv::cuda") public static void fastNlMeansDenoisingColored(@ByVal GpuMat src, @ByVal GpuMat dst, float h_luminance, float photo_render, int search_window, int block_size, @ByRef(nullValue="cv::cuda::Stream::Null()") Stream stream)
Copyright © 2020. All rights reserved.