Index
A
- accuracy 5.3.1.1, 5.3.2
- active sampling 23.1.2
- ADP
- See: Automatic Data Preparation
- Aggregates
- performance 11.4.7
- Algorithm
- algorithms 3.2.1, 3.2.2
- Apriori 3.2.2, 8.3, 11, 11.3.4, 11.3.4.1
- association 11.1
- Decision Tree 3.2.1, 13
- defined 3.2
- Expectation Maximization 3.2.2, 14
- Exponential Smoothing 3.2.1, 10.4
- Generalized Linear Models 3.2.1, 17
- k-Means 3.2.2, 7.3, 18
- Minimum Description Length 3.2.1, 19
- Naive Bayes 3.2.1, 20
- Neural Network 3.2.1
- Non-Negative Matrix Factorization 3.2.2, 22
- O-Cluster 3.2.2, 7.3, 23
- One-Class Support Vector Machine 3.2.2, 27.5
- Principal Component Analysis 3.2.2, 26.1
- Random Forest 3.2.1
- Singular Value Decomposition 3.2.2, 26
- supervised 3.2.1
- Support Vector Machines 3.2.1
- unsupervised 3.2.2
- Algorithms
- About Algorithm Meta Data Registration 24.3
- About CUR Matrix Decomposition 12.1
- About ESA 15.1
- About Exponential Smoothing 16.1
- About Neural Network 21.1
- About Random Forest 25.1
- Accumulation 16.2.2
- Algorithm Meta Data Registration 24, 24.3
- Building a Random Forest 25.2
- Column selection or attribute selection and row selection 12.4
- CUR matrix decomposition 12, 12.1, 12.2, 12.3, 12.4
- Data preparation 16.2
- double exponential smoothing 16.1.3
- ESA 15.1, 15.2
- Explicit Semantic Analysis 15.1
- text mining 15.2
- Exponential Smoothing 12.1, 12.2, 15.4, 16, 16.1, 16.1.1, 16.1.2, 16.1.3, 16.1.4, 16.1.5, 16.1.6, 16.2.1, 16.2.2, 16.2.3, 16.2.4, 16.2.5
- Exponential Smoothing Models 16.1.1, 16.2, 16.2.1, 16.2.2, 16.2.3, 16.2.4, 16.2.5
- Input Data 16.2.1
- Missing value 16.2.3
- Neural Network 21, 21.1
- Parallellish by partition 16.2.4, 16.2.5
- Prediction intervals 16.1.6
- Random Forest 25, 25.1, 25.2
- Seasonality 16.1.4
- Simple Exponential Smoothing 16.1.2
- Singular vectors 12.2
- Statistical Leverage Score 12.3
- Terminologies in Explicit Semantic Analysis 15.4
- Text Mining 15.2
- trend 16.1.3
- Trend and Seasonality 16.1.5
- anomaly detection 3.1.2.1, 3.2.2, 5.3.2, 6, 7.1
- apply
- See: scoring
- Apriori 3.2.2, 8.3, 11
- artificial intelligence 3.1
- association rules 3.1.2.1, 3.2.2, 8, 11
- attribute importance 3.1.1.2, 3.2.1, 3.2.2, 9, 19.1
- attributes 1.3.1, 3.1.2.1
- Automatic Data Preparation 1.2.2, 1.3.2, 1.3.3, 3.3.1
C
- case table 1.3.2
- categorical target 5
- centroid 7.1.1, 18.1.2
- classification 3.1.1.2, 3.2.1, 5
- class weights 5.3.2
- clustering 3.1.2.1, 3.2.2, 7
- coefficients
- computational learning 1.1.6
- confidence 1.1.2
- confidence bounds 3.2.1, 4.1.1.6, 17.2.3
- confusion matrix 1.3.3, 5.2.1, 5.3.1.1
- cost matrix 5.3.1, 13.2.2
- costs 1.3.3, 5.3.1
- CUR matrix decomposition
- configuration 12.5
D
F
M
- machine learning 3.1, 3.2.1
- market basket data 1.3.3
- market-basket data 8.2
- MDL 3.2.1
- See: Minimum Description Length
- Minimum Description Length 19
- Mining Function
- classification 15.1
- mining functions 3.1, 3.1.1.2
- Mining functions
- Time Series
- Statistics 10.3
- Time Series
- Mining Functions
- missing value treatment 3.3.1
- model details 1.3.4, 13.1.1
- multicollinearity 17.2.4
- multidimensional analysis 1.1.6, 2.6
- multivariate linear regression 4.1.1.2
O
P
- parallel execution 3.4.1, 11.1, 13.1.2, 19.1, 20.1.1
- Partitioned model 2.4
- PCA
- See: Principal Component Analysis
- PL/SQL API 2.5, 2.5.1
- PREDICTION_PROBABILITY function 2.6
- PREDICTION Function 2.5.2
- predictive analytics 2.5.4
- predictive models 3.1.1
- Principal Component Analysis 3.2.2, 26.1
- prior probabilities 5.3.2, 20.1
R
S
- sampling 11.3.4
- sampling implementation 11.3.4.1
- scoring 3.1.2.1
- anomaly detection 3.1.2.1
- classification 3.1.1.2
- clustering 3.1.2.1
- defined 1.1.1
- dynamic 3.4.2
- Exadata 2.3
- knowledge deployment 1.3.4
- model details 1.3.4
- Non-Negative Matrix Factorization 22.1.2
- O-Cluster 23.1.4
- parallel execution 3.4.1
- real time 1.3.4
- regression 3.1.1.1
- supervised models 3.1.1.2
- unsupervised models 3.1.2.1
- singularity 17.2.4
- Singular Value Decomposition 26
- sparse data 3.3.1, 11.3
- SQL data mining functions 2.5, 2.5.2
- SQL statistical functions 2.6
- star schema 11.3.1
- statistical functions 2.6
- statistics 1.1.5
- stratified sampling 5.3.2, 6.1.1
- Sub-Gradient Descent 27.1.1
- supervised learning 3.1.1
- support 1.1.2
- Support Vector Machine 3.2.1, 27
- SVD
- See: Singular Value Decomposition
- SVM
- See: Support Vector Machine