public class ALSModel extends Model<ALSModel> implements MLWritable
param: rank rank of the matrix factorization model
param: userFactors a DataFrame that stores user factors in two columns: id
and features
param: itemFactors a DataFrame that stores item factors in two columns: id
and features
Modifier and Type | Method and Description |
---|---|
UserDefinedFunction |
checkedCast()
Attempts to safely cast a user/item id to an Int.
|
static Params |
clear(Param<?> param) |
static Param<String> |
coldStartStrategy() |
Param<String> |
coldStartStrategy()
Param for strategy for dealing with unknown or new users/items at prediction time.
|
ALSModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static <T> scala.Option<T> |
get(Param<T> param) |
static String |
getColdStartStrategy() |
String |
getColdStartStrategy() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getItemCol() |
String |
getItemCol() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static String |
getUserCol() |
String |
getUserCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
itemCol() |
Param<String> |
itemCol()
Param for the column name for item ids.
|
Dataset<Row> |
itemFactors() |
static ALSModel |
load(String path) |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<String> |
predictionCol() |
int |
rank() |
static MLReader<ALSModel> |
read() |
Dataset<Row> |
recommendForAllItems(int numUsers)
Returns top
numUsers users recommended for each item, for all items. |
Dataset<Row> |
recommendForAllUsers(int numItems)
Returns top
numItems items recommended for each user, for all users. |
Dataset<Row> |
recommendForItemSubset(Dataset<?> dataset,
int numUsers)
Returns top
numUsers users recommended for each item id in the input data set. |
Dataset<Row> |
recommendForUserSubset(Dataset<?> dataset,
int numItems)
Returns top
numItems items recommended for each user id in the input data set. |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
ALSModel |
setColdStartStrategy(String value) |
ALSModel |
setItemCol(String value) |
static M |
setParent(Estimator<M> parent) |
ALSModel |
setPredictionCol(String value) |
ALSModel |
setUserCol(String value) |
static String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
static Param<String> |
userCol() |
Param<String> |
userCol()
Param for the column name for user ids.
|
Dataset<Row> |
userFactors() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static ALSModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static Param<String> userCol()
public static String getUserCol()
public static Param<String> itemCol()
public static String getItemCol()
public static Param<String> coldStartStrategy()
public static String getColdStartStrategy()
public static void save(String path) throws java.io.IOException
java.io.IOException
public String uid()
Identifiable
uid
in interface Identifiable
public int rank()
public ALSModel setUserCol(String value)
public ALSModel setItemCol(String value)
public ALSModel setPredictionCol(String value)
public ALSModel setColdStartStrategy(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public ALSModel copy(ParamMap extra)
Params
defaultCopy()
.public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public Dataset<Row> recommendForAllUsers(int numItems)
numItems
items recommended for each user, for all users.numItems
- max number of recommendations for each userpublic Dataset<Row> recommendForUserSubset(Dataset<?> dataset, int numItems)
numItems
items recommended for each user id in the input data set. Note that if
there are duplicate ids in the input dataset, only one set of recommendations per unique id
will be returned.dataset
- a Dataset containing a column of user ids. The column name must match userCol
.numItems
- max number of recommendations for each user.public Dataset<Row> recommendForAllItems(int numUsers)
numUsers
users recommended for each item, for all items.numUsers
- max number of recommendations for each itempublic Dataset<Row> recommendForItemSubset(Dataset<?> dataset, int numUsers)
numUsers
users recommended for each item id in the input data set. Note that if
there are duplicate ids in the input dataset, only one set of recommendations per unique id
will be returned.dataset
- a Dataset containing a column of item ids. The column name must match itemCol
.numUsers
- max number of recommendations for each item.public UserDefinedFunction checkedCast()
public Param<String> coldStartStrategy()
public String getColdStartStrategy()
public String getItemCol()
public String getUserCol()
public Param<String> itemCol()
public Param<String> userCol()