public class BucketedRandomProjectionLSHModel extends Model<T>
Model produced by BucketedRandomProjectionLSH
, where multiple random vectors are stored. The
vectors are normalized to be unit vectors and each vector is used in a hash function:
h_i(x) = floor(r_i.dot(x) / bucketLength)
where r_i
is the i-th random unit vector. The number of buckets will be (max L2 norm of input
vectors) / bucketLength
.
param: randUnitVectors An array of random unit vectors. Each vector represents a hash function.
Modifier and Type | Method and Description |
---|---|
static Dataset<?> |
approxNearestNeighbors(Dataset<?> dataset,
Vector key,
int numNearestNeighbors) |
Dataset<?> |
approxNearestNeighbors(Dataset<?> dataset,
Vector key,
int numNearestNeighbors)
Overloaded method for approxNearestNeighbors.
|
static Dataset<?> |
approxNearestNeighbors(Dataset<?> dataset,
Vector key,
int numNearestNeighbors,
String distCol) |
Dataset<?> |
approxNearestNeighbors(Dataset<?> dataset,
Vector key,
int numNearestNeighbors,
String distCol)
Given a large dataset and an item, approximately find at most k items which have the closest
distance to the item.
|
static Dataset<?> |
approxSimilarityJoin(Dataset<?> datasetA,
Dataset<?> datasetB,
double threshold) |
Dataset<?> |
approxSimilarityJoin(Dataset<?> datasetA,
Dataset<?> datasetB,
double threshold)
Overloaded method for approxSimilarityJoin.
|
static Dataset<?> |
approxSimilarityJoin(Dataset<?> datasetA,
Dataset<?> datasetB,
double threshold,
String distCol) |
Dataset<?> |
approxSimilarityJoin(Dataset<?> datasetA,
Dataset<?> datasetB,
double threshold,
String distCol)
Join two datasets to approximately find all pairs of rows whose distance are smaller than
the threshold.
|
static DoubleParam |
bucketLength() |
DoubleParam |
bucketLength()
The length of each hash bucket, a larger bucket lowers the false negative rate.
|
static Params |
clear(Param<?> param) |
BucketedRandomProjectionLSHModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static <T> scala.Option<T> |
get(Param<T> param) |
static double |
getBucketLength() |
double |
getBucketLength() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getInputCol() |
static int |
getNumHashTables() |
int |
getNumHashTables() |
static <T> T |
getOrDefault(Param<T> param) |
static String |
getOutputCol() |
static Param<Object> |
getParam(String paramName) |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
static Param<String> |
inputCol() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static BucketedRandomProjectionLSHModel |
load(String path) |
static IntParam |
numHashTables() |
IntParam |
numHashTables()
Param for the number of hash tables used in LSH OR-amplification.
|
static Param<String> |
outputCol() |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static MLReader<BucketedRandomProjectionLSHModel> |
read() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
BucketedRandomProjectionLSHModel |
setInputCol(String value) |
BucketedRandomProjectionLSHModel |
setOutputCol(String value) |
static M |
setParent(Estimator<M> parent) |
static String |
toString() |
static Dataset<Row> |
transform(Dataset<?> dataset) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
static Dataset<Row> |
transform(Dataset<?> dataset,
ParamMap paramMap) |
static Dataset<Row> |
transform(Dataset<?> dataset,
ParamPair<?> firstParamPair,
ParamPair<?>... otherParamPairs) |
static Dataset<Row> |
transform(Dataset<?> dataset,
ParamPair<?> firstParamPair,
scala.collection.Seq<ParamPair<?>> otherParamPairs) |
static StructType |
transformSchema(StructType schema) |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Transform the Schema for LSH
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
getInputCol, inputCol
getOutputCol, outputCol
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<BucketedRandomProjectionLSHModel> read()
public static BucketedRandomProjectionLSHModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Dataset<Row> transform(Dataset<?> dataset, ParamPair<?> firstParamPair, scala.collection.Seq<ParamPair<?>> otherParamPairs)
public static Dataset<Row> transform(Dataset<?> dataset, ParamPair<?> firstParamPair, ParamPair<?>... otherParamPairs)
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final Param<String> inputCol()
public static final String getInputCol()
public static final Param<String> outputCol()
public static final String getOutputCol()
public static final IntParam numHashTables()
public static final int getNumHashTables()
public static void save(String path) throws java.io.IOException
java.io.IOException
public static StructType transformSchema(StructType schema)
public static Dataset<?> approxNearestNeighbors(Dataset<?> dataset, Vector key, int numNearestNeighbors, String distCol)
public static Dataset<?> approxNearestNeighbors(Dataset<?> dataset, Vector key, int numNearestNeighbors)
public static Dataset<?> approxSimilarityJoin(Dataset<?> datasetA, Dataset<?> datasetB, double threshold, String distCol)
public static Dataset<?> approxSimilarityJoin(Dataset<?> datasetA, Dataset<?> datasetB, double threshold)
public static DoubleParam bucketLength()
public static final double getBucketLength()
public String uid()
Identifiable
uid
in interface Identifiable
public BucketedRandomProjectionLSHModel setInputCol(String value)
public BucketedRandomProjectionLSHModel setOutputCol(String value)
public BucketedRandomProjectionLSHModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<BucketedRandomProjectionLSHModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public DoubleParam bucketLength()
(max L2 norm of input vectors) / bucketLength
.
If input vectors are normalized, 1-10 times of pow(numRecords, -1/inputDim) would be a reasonable value
public double getBucketLength()
public Dataset<?> approxNearestNeighbors(Dataset<?> dataset, Vector key, int numNearestNeighbors, String distCol)
outputCol
is missing, the method will transform the data; if
the outputCol
exists, it will use the outputCol
. This allows caching of the
transformed data when necessary.
dataset
- The dataset to search for nearest neighbors of the key.key
- Feature vector representing the item to search for.numNearestNeighbors
- The maximum number of nearest neighbors.distCol
- Output column for storing the distance between each result row and the key.public Dataset<?> approxNearestNeighbors(Dataset<?> dataset, Vector key, int numNearestNeighbors)
dataset
- (undocumented)key
- (undocumented)numNearestNeighbors
- (undocumented)public Dataset<?> approxSimilarityJoin(Dataset<?> datasetA, Dataset<?> datasetB, double threshold, String distCol)
outputCol
is missing, the method will transform the data; if the
outputCol
exists, it will use the outputCol
. This allows caching of the transformed
data when necessary.
datasetA
- One of the datasets to join.datasetB
- Another dataset to join.threshold
- The threshold for the distance of row pairs.distCol
- Output column for storing the distance between each pair of rows.public Dataset<?> approxSimilarityJoin(Dataset<?> datasetA, Dataset<?> datasetB, double threshold)
datasetA
- (undocumented)datasetB
- (undocumented)threshold
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public int getNumHashTables()
public IntParam numHashTables()
LSH OR-amplification can be used to reduce the false negative rate. Higher values for this param lead to a reduced false negative rate, at the expense of added computational complexity.
public StructType validateAndTransformSchema(StructType schema)
schema
- The schema of the input dataset without outputCol
.outputCol
added.