View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.math3.optim.linear;
18  
19  import java.util.ArrayList;
20  import java.util.List;
21  
22  import org.apache.commons.math3.exception.TooManyIterationsException;
23  import org.apache.commons.math3.optim.OptimizationData;
24  import org.apache.commons.math3.optim.PointValuePair;
25  import org.apache.commons.math3.util.FastMath;
26  import org.apache.commons.math3.util.Precision;
27  
28  /**
29   * Solves a linear problem using the "Two-Phase Simplex" method.
30   * <p>
31   * The {@link SimplexSolver} supports the following {@link OptimizationData} data provided
32   * as arguments to {@link #optimize(OptimizationData...)}:
33   * <ul>
34   *   <li>objective function: {@link LinearObjectiveFunction} - mandatory</li>
35   *   <li>linear constraints {@link LinearConstraintSet} - mandatory</li>
36   *   <li>type of optimization: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType GoalType}
37   *    - optional, default: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}</li>
38   *   <li>whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true</li>
39   *   <li>pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}</li>
40   *   <li>callback for the best solution: {@link SolutionCallback} - optional</li>
41   *   <li>maximum number of iterations: {@link org.apache.commons.math3.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}</li>
42   * </ul>
43   * <p>
44   * <b>Note:</b> Depending on the problem definition, the default convergence criteria
45   * may be too strict, resulting in {@link NoFeasibleSolutionException} or
46   * {@link TooManyIterationsException}. In such a case it is advised to adjust these
47   * criteria with more appropriate values, e.g. relaxing the epsilon value.
48   * <p>
49   * Default convergence criteria:
50   * <ul>
51   *   <li>Algorithm convergence: 1e-6</li>
52   *   <li>Floating-point comparisons: 10 ulp</li>
53   *   <li>Cut-Off value: 1e-10</li>
54    * </ul>
55   * <p>
56   * The cut-off value has been introduced to handle the case of very small pivot elements
57   * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy.
58   * Potential pivot elements smaller than this value will be treated as if they were zero
59   * and are thus not considered by the pivot selection mechanism. The default value is safe
60   * for many problems, but may need to be adjusted in case of very small coefficients
61   * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}.
62   *
63   * @since 2.0
64   */
65  public class SimplexSolver extends LinearOptimizer {
66      /** Default amount of error to accept in floating point comparisons (as ulps). */
67      static final int DEFAULT_ULPS = 10;
68  
69      /** Default cut-off value. */
70      static final double DEFAULT_CUT_OFF = 1e-10;
71  
72      /** Default amount of error to accept for algorithm convergence. */
73      private static final double DEFAULT_EPSILON = 1.0e-6;
74  
75      /** Amount of error to accept for algorithm convergence. */
76      private final double epsilon;
77  
78      /** Amount of error to accept in floating point comparisons (as ulps). */
79      private final int maxUlps;
80  
81      /**
82       * Cut-off value for entries in the tableau: values smaller than the cut-off
83       * are treated as zero to improve numerical stability.
84       */
85      private final double cutOff;
86  
87      /** The pivot selection method to use. */
88      private PivotSelectionRule pivotSelection;
89  
90      /**
91       * The solution callback to access the best solution found so far in case
92       * the optimizer fails to find an optimal solution within the iteration limits.
93       */
94      private SolutionCallback solutionCallback;
95  
96      /**
97       * Builds a simplex solver with default settings.
98       */
99      public SimplexSolver() {
100         this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF);
101     }
102 
103     /**
104      * Builds a simplex solver with a specified accepted amount of error.
105      *
106      * @param epsilon Amount of error to accept for algorithm convergence.
107      */
108     public SimplexSolver(final double epsilon) {
109         this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF);
110     }
111 
112     /**
113      * Builds a simplex solver with a specified accepted amount of error.
114      *
115      * @param epsilon Amount of error to accept for algorithm convergence.
116      * @param maxUlps Amount of error to accept in floating point comparisons.
117      */
118     public SimplexSolver(final double epsilon, final int maxUlps) {
119         this(epsilon, maxUlps, DEFAULT_CUT_OFF);
120     }
121 
122     /**
123      * Builds a simplex solver with a specified accepted amount of error.
124      *
125      * @param epsilon Amount of error to accept for algorithm convergence.
126      * @param maxUlps Amount of error to accept in floating point comparisons.
127      * @param cutOff Values smaller than the cutOff are treated as zero.
128      */
129     public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) {
130         this.epsilon = epsilon;
131         this.maxUlps = maxUlps;
132         this.cutOff = cutOff;
133         this.pivotSelection = PivotSelectionRule.DANTZIG;
134     }
135 
136     /**
137      * {@inheritDoc}
138      *
139      * @param optData Optimization data. In addition to those documented in
140      * {@link LinearOptimizer#optimize(OptimizationData...)
141      * LinearOptimizer}, this method will register the following data:
142      * <ul>
143      *  <li>{@link SolutionCallback}</li>
144      *  <li>{@link PivotSelectionRule}</li>
145      * </ul>
146      *
147      * @return {@inheritDoc}
148      * @throws TooManyIterationsException if the maximal number of iterations is exceeded.
149      */
150     @Override
151     public PointValuePair optimize(OptimizationData... optData)
152         throws TooManyIterationsException {
153         // Set up base class and perform computation.
154         return super.optimize(optData);
155     }
156 
157     /**
158      * {@inheritDoc}
159      *
160      * @param optData Optimization data.
161      * In addition to those documented in
162      * {@link LinearOptimizer#parseOptimizationData(OptimizationData[])
163      * LinearOptimizer}, this method will register the following data:
164      * <ul>
165      *  <li>{@link SolutionCallback}</li>
166      *  <li>{@link PivotSelectionRule}</li>
167      * </ul>
168      */
169     @Override
170     protected void parseOptimizationData(OptimizationData... optData) {
171         // Allow base class to register its own data.
172         super.parseOptimizationData(optData);
173 
174         // reset the callback before parsing
175         solutionCallback = null;
176 
177         for (OptimizationData data : optData) {
178             if (data instanceof SolutionCallback) {
179                 solutionCallback = (SolutionCallback) data;
180                 continue;
181             }
182             if (data instanceof PivotSelectionRule) {
183                 pivotSelection = (PivotSelectionRule) data;
184                 continue;
185             }
186         }
187     }
188 
189     /**
190      * Returns the column with the most negative coefficient in the objective function row.
191      *
192      * @param tableau Simple tableau for the problem.
193      * @return the column with the most negative coefficient.
194      */
195     private Integer getPivotColumn(SimplexTableau tableau) {
196         double minValue = 0;
197         Integer minPos = null;
198         for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) {
199             final double entry = tableau.getEntry(0, i);
200             // check if the entry is strictly smaller than the current minimum
201             // do not use a ulp/epsilon check
202             if (entry < minValue) {
203                 minValue = entry;
204                 minPos = i;
205 
206                 // Bland's rule: chose the entering column with the lowest index
207                 if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) {
208                     break;
209                 }
210             }
211         }
212         return minPos;
213     }
214 
215     /**
216      * Checks whether the given column is valid pivot column, i.e. will result
217      * in a valid pivot row.
218      * <p>
219      * When applying Bland's rule to select the pivot column, it may happen that
220      * there is no corresponding pivot row. This method will check if the selected
221      * pivot column will return a valid pivot row.
222      *
223      * @param tableau simplex tableau for the problem
224      * @param col the column to test
225      * @return {@code true} if the pivot column is valid, {@code false} otherwise
226      */
227     private boolean isValidPivotColumn(SimplexTableau tableau, int col) {
228         for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
229             final double entry = tableau.getEntry(i, col);
230 
231             // do the same check as in getPivotRow
232             if (Precision.compareTo(entry, 0d, cutOff) > 0) {
233                 return true;
234             }
235         }
236         return false;
237     }
238 
239     /**
240      * Returns the row with the minimum ratio as given by the minimum ratio test (MRT).
241      *
242      * @param tableau Simplex tableau for the problem.
243      * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}).
244      * @return the row with the minimum ratio.
245      */
246     private Integer getPivotRow(SimplexTableau tableau, final int col) {
247         // create a list of all the rows that tie for the lowest score in the minimum ratio test
248         List<Integer> minRatioPositions = new ArrayList<Integer>();
249         double minRatio = Double.MAX_VALUE;
250         for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) {
251             final double rhs = tableau.getEntry(i, tableau.getWidth() - 1);
252             final double entry = tableau.getEntry(i, col);
253 
254             // only consider pivot elements larger than the cutOff threshold
255             // selecting others may lead to degeneracy or numerical instabilities
256             if (Precision.compareTo(entry, 0d, cutOff) > 0) {
257                 final double ratio = FastMath.abs(rhs / entry);
258                 // check if the entry is strictly equal to the current min ratio
259                 // do not use a ulp/epsilon check
260                 final int cmp = Double.compare(ratio, minRatio);
261                 if (cmp == 0) {
262                     minRatioPositions.add(i);
263                 } else if (cmp < 0) {
264                     minRatio = ratio;
265                     minRatioPositions.clear();
266                     minRatioPositions.add(i);
267                 }
268             }
269         }
270 
271         if (minRatioPositions.size() == 0) {
272             return null;
273         } else if (minRatioPositions.size() > 1) {
274             // there's a degeneracy as indicated by a tie in the minimum ratio test
275 
276             // 1. check if there's an artificial variable that can be forced out of the basis
277             if (tableau.getNumArtificialVariables() > 0) {
278                 for (Integer row : minRatioPositions) {
279                     for (int i = 0; i < tableau.getNumArtificialVariables(); i++) {
280                         int column = i + tableau.getArtificialVariableOffset();
281                         final double entry = tableau.getEntry(row, column);
282                         if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) {
283                             return row;
284                         }
285                     }
286                 }
287             }
288 
289             // 2. apply Bland's rule to prevent cycling:
290             //    take the row for which the corresponding basic variable has the smallest index
291             //
292             // see http://www.stanford.edu/class/msande310/blandrule.pdf
293             // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper)
294 
295             Integer minRow = null;
296             int minIndex = tableau.getWidth();
297             for (Integer row : minRatioPositions) {
298                 final int basicVar = tableau.getBasicVariable(row);
299                 if (basicVar < minIndex) {
300                     minIndex = basicVar;
301                     minRow = row;
302                 }
303             }
304             return minRow;
305         }
306         return minRatioPositions.get(0);
307     }
308 
309     /**
310      * Runs one iteration of the Simplex method on the given model.
311      *
312      * @param tableau Simple tableau for the problem.
313      * @throws TooManyIterationsException if the allowed number of iterations has been exhausted.
314      * @throws UnboundedSolutionException if the model is found not to have a bounded solution.
315      */
316     protected void doIteration(final SimplexTableau tableau)
317         throws TooManyIterationsException,
318                UnboundedSolutionException {
319 
320         incrementIterationCount();
321 
322         Integer pivotCol = getPivotColumn(tableau);
323         Integer pivotRow = getPivotRow(tableau, pivotCol);
324         if (pivotRow == null) {
325             throw new UnboundedSolutionException();
326         }
327 
328         tableau.performRowOperations(pivotCol, pivotRow);
329     }
330 
331     /**
332      * Solves Phase 1 of the Simplex method.
333      *
334      * @param tableau Simple tableau for the problem.
335      * @throws TooManyIterationsException if the allowed number of iterations has been exhausted.
336      * @throws UnboundedSolutionException if the model is found not to have a bounded solution.
337      * @throws NoFeasibleSolutionException if there is no feasible solution?
338      */
339     protected void solvePhase1(final SimplexTableau tableau)
340         throws TooManyIterationsException,
341                UnboundedSolutionException,
342                NoFeasibleSolutionException {
343 
344         // make sure we're in Phase 1
345         if (tableau.getNumArtificialVariables() == 0) {
346             return;
347         }
348 
349         while (!tableau.isOptimal()) {
350             doIteration(tableau);
351         }
352 
353         // if W is not zero then we have no feasible solution
354         if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) {
355             throw new NoFeasibleSolutionException();
356         }
357     }
358 
359     /** {@inheritDoc} */
360     @Override
361     public PointValuePair doOptimize()
362         throws TooManyIterationsException,
363                UnboundedSolutionException,
364                NoFeasibleSolutionException {
365 
366         // reset the tableau to indicate a non-feasible solution in case
367         // we do not pass phase 1 successfully
368         if (solutionCallback != null) {
369             solutionCallback.setTableau(null);
370         }
371 
372         final SimplexTableau tableau =
373             new SimplexTableau(getFunction(),
374                                getConstraints(),
375                                getGoalType(),
376                                isRestrictedToNonNegative(),
377                                epsilon,
378                                maxUlps);
379 
380         solvePhase1(tableau);
381         tableau.dropPhase1Objective();
382 
383         // after phase 1, we are sure to have a feasible solution
384         if (solutionCallback != null) {
385             solutionCallback.setTableau(tableau);
386         }
387 
388         while (!tableau.isOptimal()) {
389             doIteration(tableau);
390         }
391 
392         // check that the solution respects the nonNegative restriction in case
393         // the epsilon/cutOff values are too large for the actual linear problem
394         // (e.g. with very small constraint coefficients), the solver might actually
395         // find a non-valid solution (with negative coefficients).
396         final PointValuePair solution = tableau.getSolution();
397         if (isRestrictedToNonNegative()) {
398             final double[] coeff = solution.getPoint();
399             for (int i = 0; i < coeff.length; i++) {
400                 if (Precision.compareTo(coeff[i], 0, epsilon) < 0) {
401                     throw new NoFeasibleSolutionException();
402                 }
403             }
404         }
405         return solution;
406     }
407 }