19.1.9. email.message.Message
: Representing an email message using the compat32
API¶
The Message
class is very similar to the
EmailMessage
class, without the methods added by that
class, and with the default behavior of certain other methods being slightly
different. We also document here some methods that, while supported by the
EmailMessage
class, are not recommended unless you are
dealing with legacy code.
The philosophy and structure of the two classes is otherwise the same.
This document describes the behavior under the default (for Message
)
policy Compat32
. If you are going to use another policy,
you should be using the EmailMessage
class instead.
An email message consists of headers and a payload. Headers must be RFC 5233 style names and values, where the field name and value are separated by a colon. The colon is not part of either the field name or the field value. The payload may be a simple text message, or a binary object, or a structured sequence of sub-messages each with their own set of headers and their own payload. The latter type of payload is indicated by the message having a MIME type such as multipart/* or message/rfc822.
The conceptual model provided by a Message
object is that of an
ordered dictionary of headers with additional methods for accessing both
specialized information from the headers, for accessing the payload, for
generating a serialized version of the message, and for recursively walking
over the object tree. Note that duplicate headers are supported but special
methods must be used to access them.
The Message
pseudo-dictionary is indexed by the header names, which
must be ASCII values. The values of the dictionary are strings that are
supposed to contain only ASCII characters; there is some special handling for
non-ASCII input, but it doesn’t always produce the correct results. Headers
are stored and returned in case-preserving form, but field names are matched
case-insensitively. There may also be a single envelope header, also known as
the Unix-From header or the From_
header. The payload is either a
string or bytes, in the case of simple message objects, or a list of
Message
objects, for MIME container documents (e.g.
multipart/* and message/rfc822).
Here are the methods of the Message
class:
-
class
email.message.
Message
(policy=compat32)¶ If policy is specified (it must be an instance of a
policy
class) use the rules it specifies to update and serialize the representation of the message. If policy is not set, use thecompat32
policy, which maintains backward compatibility with the Python 3.2 version of the email package. For more information see thepolicy
documentation.Changed in version 3.3: The policy keyword argument was added.
-
as_string
(unixfrom=False, maxheaderlen=0, policy=None)¶ Return the entire message flattened as a string. When optional unixfrom is true, the envelope header is included in the returned string. unixfrom defaults to
False
. For backward compabitility reasons, maxheaderlen defaults to0
, so if you want a different value you must override it explicitly (the value specified for max_line_length in the policy will be ignored by this method). The policy argument may be used to override the default policy obtained from the message instance. This can be used to control some of the formatting produced by the method, since the specified policy will be passed to theGenerator
.Flattening the message may trigger changes to the
Message
if defaults need to be filled in to complete the transformation to a string (for example, MIME boundaries may be generated or modified).Note that this method is provided as a convenience and may not always format the message the way you want. For example, by default it does not do the mangling of lines that begin with
From
that is required by the unix mbox format. For more flexibility, instantiate aGenerator
instance and use itsflatten()
method directly. For example:from io import StringIO from email.generator import Generator fp = StringIO() g = Generator(fp, mangle_from_=True, maxheaderlen=60) g.flatten(msg) text = fp.getvalue()
If the message object contains binary data that is not encoded according to RFC standards, the non-compliant data will be replaced by unicode “unknown character” code points. (See also
as_bytes()
andBytesGenerator
.)Changed in version 3.4: the policy keyword argument was added.
-
__str__
()¶ Equivalent to
as_string()
. Allowsstr(msg)
to produce a string containing the formatted message.
-
as_bytes
(unixfrom=False, policy=None)¶ Return the entire message flattened as a bytes object. When optional unixfrom is true, the envelope header is included in the returned string. unixfrom defaults to
False
. The policy argument may be used to override the default policy obtained from the message instance. This can be used to control some of the formatting produced by the method, since the specified policy will be passed to theBytesGenerator
.Flattening the message may trigger changes to the
Message
if defaults need to be filled in to complete the transformation to a string (for example, MIME boundaries may be generated or modified).Note that this method is provided as a convenience and may not always format the message the way you want. For example, by default it does not do the mangling of lines that begin with
From
that is required by the unix mbox format. For more flexibility, instantiate aBytesGenerator
instance and use itsflatten()
method directly. For example:from io import BytesIO from email.generator import BytesGenerator fp = BytesIO() g = BytesGenerator(fp, mangle_from_=True, maxheaderlen=60) g.flatten(msg) text = fp.getvalue()
New in version 3.4.
-
__bytes__
()¶ Equivalent to
as_bytes()
. Allowsbytes(msg)
to produce a bytes object containing the formatted message.New in version 3.4.
-
is_multipart
()¶ Return
True
if the message’s payload is a list of sub-Message
objects, otherwise returnFalse
. Whenis_multipart()
returnsFalse
, the payload should be a string object (which might be a CTE encoded binary payload. (Note thatis_multipart()
returningTrue
does not necessarily mean that “msg.get_content_maintype() == ‘multipart’” will return theTrue
. For example,is_multipart
will returnTrue
when theMessage
is of typemessage/rfc822
.)
-
set_unixfrom
(unixfrom)¶ Set the message’s envelope header to unixfrom, which should be a string.
-
get_unixfrom
()¶ Return the message’s envelope header. Defaults to
None
if the envelope header was never set.
-
attach
(payload)¶ Add the given payload to the current payload, which must be
None
or a list ofMessage
objects before the call. After the call, the payload will always be a list ofMessage
objects. If you want to set the payload to a scalar object (e.g. a string), useset_payload()
instead.This is a legacy method. On the
EmailMessage
class its functionality is replaced byset_content()
and the relatedmake
andadd
methods.
-
get_payload
(i=None, decode=False)¶ Return the current payload, which will be a list of
Message
objects whenis_multipart()
isTrue
, or a string whenis_multipart()
isFalse
. If the payload is a list and you mutate the list object, you modify the message’s payload in place.With optional argument i,
get_payload()
will return the i-th element of the payload, counting from zero, ifis_multipart()
isTrue
. AnIndexError
will be raised if i is less than 0 or greater than or equal to the number of items in the payload. If the payload is a string (i.e.is_multipart()
isFalse
) and i is given, aTypeError
is raised.Optional decode is a flag indicating whether the payload should be decoded or not, according to the Content-Transfer-Encoding header. When
True
and the message is not a multipart, the payload will be decoded if this header’s value isquoted-printable
orbase64
. If some other encoding is used, or Content-Transfer-Encoding header is missing, the payload is returned as-is (undecoded). In all cases the returned value is binary data. If the message is a multipart and the decode flag isTrue
, thenNone
is returned. If the payload is base64 and it was not perfectly formed (missing padding, characters outside the base64 alphabet), then an appropriate defect will be added to the message’s defect property (InvalidBase64PaddingDefect
orInvalidBase64CharactersDefect
, respectively).When decode is
False
(the default) the body is returned as a string without decoding the Content-Transfer-Encoding. However, for a Content-Transfer-Encoding of 8bit, an attempt is made to decode the original bytes using thecharset
specified by the Content-Type header, using thereplace
error handler. If nocharset
is specified, or if thecharset
given is not recognized by the email package, the body is decoded using the default ASCII charset.This is a legacy method. On the
EmailMessage
class its functionality is replaced byget_content()
anditer_parts()
.
-
set_payload
(payload, charset=None)¶ Set the entire message object’s payload to payload. It is the client’s responsibility to ensure the payload invariants. Optional charset sets the message’s default character set; see
set_charset()
for details.This is a legacy method. On the
EmailMessage
class its functionality is replaced byset_content()
.
-
set_charset
(charset)¶ Set the character set of the payload to charset, which can either be a
Charset
instance (seeemail.charset
), a string naming a character set, orNone
. If it is a string, it will be converted to aCharset
instance. If charset isNone
, thecharset
parameter will be removed from the Content-Type header (the message will not be otherwise modified). Anything else will generate aTypeError
.If there is no existing MIME-Version header one will be added. If there is no existing Content-Type header, one will be added with a value of text/plain. Whether the Content-Type header already exists or not, its
charset
parameter will be set to charset.output_charset. If charset.input_charset and charset.output_charset differ, the payload will be re-encoded to the output_charset. If there is no existing Content-Transfer-Encoding header, then the payload will be transfer-encoded, if needed, using the specifiedCharset
, and a header with the appropriate value will be added. If a Content-Transfer-Encoding header already exists, the payload is assumed to already be correctly encoded using that Content-Transfer-Encoding and is not modified.This is a legacy method. On the
EmailMessage
class its functionality is replaced by the charset parameter of theemail.emailmessage.EmailMessage.set_content()
method.
-
get_charset
()¶ Return the
Charset
instance associated with the message’s payload.This is a legacy method. On the
EmailMessage
class it always returnsNone
.
The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers. Note that there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface. For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers. Also, in dictionaries there is no guaranteed order to the keys returned by
keys()
, but in aMessage
object, headers are always returned in the order they appeared in the original message, or were added to the message later. Any header deleted and then re-added are always appended to the end of the header list.These semantic differences are intentional and are biased toward maximal convenience.
Note that in all cases, any envelope header present in the message is not included in the mapping interface.
In a model generated from bytes, any header values that (in contravention of the RFCs) contain non-ASCII bytes will, when retrieved through this interface, be represented as
Header
objects with a charset of unknown-8bit.-
__len__
()¶ Return the total number of headers, including duplicates.
-
__contains__
(name)¶ Return true if the message object has a field named name. Matching is done case-insensitively and name should not include the trailing colon. Used for the
in
operator, e.g.:if 'message-id' in myMessage: print('Message-ID:', myMessage['message-id'])
-
__getitem__
(name)¶ Return the value of the named header field. name should not include the colon field separator. If the header is missing,
None
is returned; aKeyError
is never raised.Note that if the named field appears more than once in the message’s headers, exactly which of those field values will be returned is undefined. Use the
get_all()
method to get the values of all the extant named headers.
-
__setitem__
(name, val)¶ Add a header to the message with field name name and value val. The field is appended to the end of the message’s existing fields.
Note that this does not overwrite or delete any existing header with the same name. If you want to ensure that the new header is the only one present in the message with field name name, delete the field first, e.g.:
del msg['subject'] msg['subject'] = 'Python roolz!'
-
__delitem__
(name)¶ Delete all occurrences of the field with name name from the message’s headers. No exception is raised if the named field isn’t present in the headers.
-
keys
()¶ Return a list of all the message’s header field names.
-
values
()¶ Return a list of all the message’s field values.
-
items
()¶ Return a list of 2-tuples containing all the message’s field headers and values.
-
get
(name, failobj=None)¶ Return the value of the named header field. This is identical to
__getitem__()
except that optional failobj is returned if the named header is missing (defaults toNone
).
Here are some additional useful methods:
-
get_all
(name, failobj=None)¶ Return a list of all the values for the field named name. If there are no such named headers in the message, failobj is returned (defaults to
None
).
-
add_header
(_name, _value, **_params)¶ Extended header setting. This method is similar to
__setitem__()
except that additional header parameters can be provided as keyword arguments. _name is the header field to add and _value is the primary value for the header.For each item in the keyword argument dictionary _params, the key is taken as the parameter name, with underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter will be added as
key="value"
unless the value isNone
, in which case only the key will be added. If the value contains non-ASCII characters, it can be specified as a three tuple in the format(CHARSET, LANGUAGE, VALUE)
, whereCHARSET
is a string naming the charset to be used to encode the value,LANGUAGE
can usually be set toNone
or the empty string (see RFC 2231 for other possibilities), andVALUE
is the string value containing non-ASCII code points. If a three tuple is not passed and the value contains non-ASCII characters, it is automatically encoded in RFC 2231 format using aCHARSET
ofutf-8
and aLANGUAGE
ofNone
.Here’s an example:
msg.add_header('Content-Disposition', 'attachment', filename='bud.gif')
This will add a header that looks like
Content-Disposition: attachment; filename="bud.gif"
An example with non-ASCII characters:
msg.add_header('Content-Disposition', 'attachment', filename=('iso-8859-1', '', 'Fußballer.ppt'))
Which produces
Content-Disposition: attachment; filename*="iso-8859-1''Fu%DFballer.ppt"
-
replace_header
(_name, _value)¶ Replace a header. Replace the first header found in the message that matches _name, retaining header order and field name case. If no matching header was found, a
KeyError
is raised.
-
get_content_type
()¶ Return the message’s content type. The returned string is coerced to lower case of the form maintype/subtype. If there was no Content-Type header in the message the default type as given by
get_default_type()
will be returned. Since according to RFC 2045, messages always have a default type,get_content_type()
will always return a value.RFC 2045 defines a message’s default type to be text/plain unless it appears inside a multipart/digest container, in which case it would be message/rfc822. If the Content-Type header has an invalid type specification, RFC 2045 mandates that the default type be text/plain.
-
get_content_maintype
()¶ Return the message’s main content type. This is the maintype part of the string returned by
get_content_type()
.
-
get_content_subtype
()¶ Return the message’s sub-content type. This is the subtype part of the string returned by
get_content_type()
.
-
get_default_type
()¶ Return the default content type. Most messages have a default content type of text/plain, except for messages that are subparts of multipart/digest containers. Such subparts have a default content type of message/rfc822.
-
set_default_type
(ctype)¶ Set the default content type. ctype should either be text/plain or message/rfc822, although this is not enforced. The default content type is not stored in the Content-Type header.
-
get_params
(failobj=None, header='content-type', unquote=True)¶ Return the message’s Content-Type parameters, as a list. The elements of the returned list are 2-tuples of key/value pairs, as split on the
'='
sign. The left hand side of the'='
is the key, while the right hand side is the value. If there is no'='
sign in the parameter the value is the empty string, otherwise the value is as described inget_param()
and is unquoted if optional unquote isTrue
(the default).Optional failobj is the object to return if there is no Content-Type header. Optional header is the header to search instead of Content-Type.
This is a legacy method. On the
EmailMessage
class its functionality is replaced by the params property of the individual header objects returned by the header access methods.
-
get_param
(param, failobj=None, header='content-type', unquote=True)¶ Return the value of the Content-Type header’s parameter param as a string. If the message has no Content-Type header or if there is no such parameter, then failobj is returned (defaults to
None
).Optional header if given, specifies the message header to use instead of Content-Type.
Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of the form
(CHARSET, LANGUAGE, VALUE)
. Note that bothCHARSET
andLANGUAGE
can beNone
, in which case you should considerVALUE
to be encoded in theus-ascii
charset. You can usually ignoreLANGUAGE
.If your application doesn’t care whether the parameter was encoded as in RFC 2231, you can collapse the parameter value by calling
email.utils.collapse_rfc2231_value()
, passing in the return value fromget_param()
. This will return a suitably decoded Unicode string when the value is a tuple, or the original string unquoted if it isn’t. For example:rawparam = msg.get_param('foo') param = email.utils.collapse_rfc2231_value(rawparam)
In any case, the parameter value (either the returned string, or the
VALUE
item in the 3-tuple) is always unquoted, unless unquote is set toFalse
.This is a legacy method. On the
EmailMessage
class its functionality is replaced by the params property of the individual header objects returned by the header access methods.
-
set_param
(param, value, header='Content-Type', requote=True, charset=None, language='', replace=False)¶ Set a parameter in the Content-Type header. If the parameter already exists in the header, its value will be replaced with value. If the Content-Type header as not yet been defined for this message, it will be set to text/plain and the new parameter value will be appended as per RFC 2045.
Optional header specifies an alternative header to Content-Type, and all parameters will be quoted as necessary unless optional requote is
False
(the default isTrue
).If optional charset is specified, the parameter will be encoded according to RFC 2231. Optional language specifies the RFC 2231 language, defaulting to the empty string. Both charset and language should be strings.
If replace is
False
(the default) the header is moved to the end of the list of headers. If replace isTrue
, the header will be updated in place.Changed in version 3.4:
replace
keyword was added.
-
del_param
(param, header='content-type', requote=True)¶ Remove the given parameter completely from the Content-Type header. The header will be re-written in place without the parameter or its value. All values will be quoted as necessary unless requote is
False
(the default isTrue
). Optional header specifies an alternative to Content-Type.
-
set_type
(type, header='Content-Type', requote=True)¶ Set the main type and subtype for the Content-Type header. type must be a string in the form maintype/subtype, otherwise a
ValueError
is raised.This method replaces the Content-Type header, keeping all the parameters in place. If requote is
False
, this leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the default).An alternative header can be specified in the header argument. When the Content-Type header is set a MIME-Version header is also added.
This is a legacy method. On the
EmailMessage
class its functionality is replaced by themake_
andadd_
methods.
-
get_filename
(failobj=None)¶ Return the value of the
filename
parameter of the Content-Disposition header of the message. If the header does not have afilename
parameter, this method falls back to looking for thename
parameter on the Content-Type header. If neither is found, or the header is missing, then failobj is returned. The returned string will always be unquoted as peremail.utils.unquote()
.
-
get_boundary
(failobj=None)¶ Return the value of the
boundary
parameter of the Content-Type header of the message, or failobj if either the header is missing, or has noboundary
parameter. The returned string will always be unquoted as peremail.utils.unquote()
.
-
set_boundary
(boundary)¶ Set the
boundary
parameter of the Content-Type header to boundary.set_boundary()
will always quote boundary if necessary. AHeaderParseError
is raised if the message object has no Content-Type header.Note that using this method is subtly different than deleting the old Content-Type header and adding a new one with the new boundary via
add_header()
, becauseset_boundary()
preserves the order of the Content-Type header in the list of headers. However, it does not preserve any continuation lines which may have been present in the original Content-Type header.
-
get_content_charset
(failobj=None)¶ Return the
charset
parameter of the Content-Type header, coerced to lower case. If there is no Content-Type header, or if that header has nocharset
parameter, failobj is returned.Note that this method differs from
get_charset()
which returns theCharset
instance for the default encoding of the message body.
-
get_charsets
(failobj=None)¶ Return a list containing the character set names in the message. If the message is a multipart, then the list will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.
Each item in the list will be a string which is the value of the
charset
parameter in the Content-Type header for the represented subpart. However, if the subpart has no Content-Type header, nocharset
parameter, or is not of the text main MIME type, then that item in the returned list will be failobj.
-
get_content_disposition
()¶ Return the lowercased value (without parameters) of the message’s Content-Disposition header if it has one, or
None
. The possible values for this method are inline, attachment orNone
if the message follows RFC 2183.New in version 3.5.
-
walk
()¶ The
walk()
method is an all-purpose generator which can be used to iterate over all the parts and subparts of a message object tree, in depth-first traversal order. You will typically usewalk()
as the iterator in afor
loop; each iteration returns the next subpart.Here’s an example that prints the MIME type of every part of a multipart message structure:
>>> for part in msg.walk(): ... print(part.get_content_type()) multipart/report text/plain message/delivery-status text/plain text/plain message/rfc822 text/plain
walk
iterates over the subparts of any part whereis_multipart()
returnsTrue
, even thoughmsg.get_content_maintype() == 'multipart'
may returnFalse
. We can see this in our example by making use of the_structure
debug helper function:>>> for part in msg.walk(): ... print(part.get_content_maintype() == 'multipart'), ... part.is_multipart()) True True False False False True False False False False False True False False >>> _structure(msg) multipart/report text/plain message/delivery-status text/plain text/plain message/rfc822 text/plain
Here the
message
parts are notmultiparts
, but they do contain subparts.is_multipart()
returnsTrue
andwalk
descends into the subparts.
Message
objects can also optionally contain two instance attributes, which can be used when generating the plain text of a MIME message.-
preamble
¶ The format of a MIME document allows for some text between the blank line following the headers, and the first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader because it falls outside the standard MIME armor. However, when viewing the raw text of the message, or when viewing the message in a non-MIME aware reader, this text can become visible.
The preamble attribute contains this leading extra-armor text for MIME documents. When the
Parser
discovers some text after the headers but before the first boundary string, it assigns this text to the message’s preamble attribute. When theGenerator
is writing out the plain text representation of a MIME message, and it finds the message has a preamble attribute, it will write this text in the area between the headers and the first boundary. Seeemail.parser
andemail.generator
for details.Note that if the message object has no preamble, the preamble attribute will be
None
.
-
epilogue
¶ The epilogue attribute acts the same way as the preamble attribute, except that it contains text that appears between the last boundary and the end of the message.
You do not need to set the epilogue to the empty string in order for the
Generator
to print a newline at the end of the file.
-
defects
¶ The defects attribute contains a list of all the problems found when parsing this message. See
email.errors
for a detailed description of the possible parsing defects.
-