Series.str.
replace
Replace each occurrence of pattern/regex in the Series/Index.
Equivalent to str.replace() or re.sub(), depending on the regex value.
str.replace()
re.sub()
String can be a character sequence or regular expression.
Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See re.sub().
Number of replacements to make from start.
Determines if replace is case sensitive:
If True, case sensitive (the default if pat is a string)
Set to False for case insensitive
Cannot be set if pat is a compiled regex.
Regex module flags, e.g. re.IGNORECASE. Cannot be set if pat is a compiled regex.
Determines if assumes the passed-in pattern is a regular expression:
If True, assumes the passed-in pattern is a regular expression.
If False, treats the pattern as a literal string
Cannot be set to False if pat is a compiled regex or repl is a callable.
New in version 0.23.0.
A copy of the object with all matching occurrences of pat replaced by repl.
if regex is False and repl is a callable or pat is a compiled regex
if pat is a compiled regex and case or flags is set
Notes
When pat is a compiled regex, all flags should be included in the compiled regex. Use of case, flags, or regex=False with a compiled regex will raise an error.
Examples
When pat is a string and regex is True (the default), the given pat is compiled as a regex. When repl is a string, it replaces matching regex patterns as with re.sub(). NaN value(s) in the Series are left as is:
>>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True) 0 bao 1 baz 2 NaN dtype: object
When pat is a string and regex is False, every pat is replaced with repl as with str.replace():
>>> pd.Series(['f.o', 'fuz', np.nan]).str.replace('f.', 'ba', regex=False) 0 bao 1 fuz 2 NaN dtype: object
When repl is a callable, it is called on every pat using re.sub(). The callable should expect one positional argument (a regex object) and return a string.
To get the idea:
>>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr) 0 <re.Match object; span=(0, 1), match='f'>oo 1 <re.Match object; span=(0, 1), match='f'>uz 2 NaN dtype: object
Reverse every lowercase alphabetic word:
>>> repl = lambda m: m.group(0)[::-1] >>> pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(r'[a-z]+', repl) 0 oof 123 1 rab zab 2 NaN dtype: object
Using regex groups (extract second group and swap case):
>>> pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)" >>> repl = lambda m: m.group('two').swapcase() >>> pd.Series(['One Two Three', 'Foo Bar Baz']).str.replace(pat, repl) 0 tWO 1 bAR dtype: object
Using a compiled regex with flags
>>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') 0 foo 1 bar 2 NaN dtype: object