modprobe cciss [ cciss_allow_hpsa=1 ]
cciss is a block driver for older HP Smart Array RAID controllers.
Smart Array 5300 Smart Array 5i Smart Array 532 Smart Array 5312 Smart Array 641 Smart Array 642 Smart Array 6400 Smart Array 6400 EM Smart Array 6i Smart Array P600 Smart Array P400i Smart Array E200i Smart Array E200 Smart Array E200i Smart Array E200i Smart Array E200i Smart Array E500
Smart Array 5300 Smart Array 5i Smart Array 532 Smart Array 5312 Smart Array 641 Smart Array 642 Smart Array 6400 Smart Array 6400 U320 Expansion Module Smart Array 6i Smart Array P600 Smart Array P800 Smart Array E400 Smart Array P400i Smart Array E200 Smart Array E200i Smart Array E500 Smart Array P700m Smart Array P212 Smart Array P410 Smart Array P410i Smart Array P411 Smart Array P812 Smart Array P712m Smart Array P711m
Major numbers:
104 cciss0
105 cciss1
106 cciss2
105 cciss3
108 cciss4
109 cciss5
110 cciss6
111 cciss7
Minor numbers:
b7 b6 b5 b4 b3 b2 b1 b0
|----+----| |----+----|
| |
| +-------- Partition ID (0=wholedev, 1-15 partition)
|
+-------------------- Logical Volume number
The device naming scheme is:
/dev/cciss/c0d0 | Controller 0, disk 0, whole device |
/dev/cciss/c0d0p1 | Controller 0, disk 0, partition 1 |
/dev/cciss/c0d0p2 | Controller 0, disk 0, partition 2 |
/dev/cciss/c0d0p3 | Controller 0, disk 0, partition 3 |
/dev/cciss/c1d1 | Controller 1, disk 1, whole device |
/dev/cciss/c1d1p1 | Controller 1, disk 1, partition 1 |
/dev/cciss/c1d1p2 | Controller 1, disk 1, partition 2 |
/dev/cciss/c1d1p3 | Controller 1, disk 1, partition 3 |
$ cd /proc/driver/cciss $ ls -l total 0 -rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss0 -rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss1 -rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss2 $ cat cciss2 cciss2: HP Smart Array P800 Controller Board ID: 0x3223103c Firmware Version: 7.14 IRQ: 16 Logical drives: 1 Current Q depth: 0 Current # commands on controller: 0 Max Q depth since init: 1 Max # commands on controller since init: 2 Max SG entries since init: 32 Sequential access devices: 0
Additionally, note that the driver will not engage the SCSI core at init time. The driver must be directed to dynamically engage the SCSI core via the /proc filesystem entry, which the "block" side of the driver creates as /proc/driver/cciss/cciss* at run time. This is because at driver init time, the SCSI core may not yet be initialized (because the driver is a block driver) and attempting to register it with the SCSI core in such a case would cause a hang. This is best done via an initialization script (typically in /etc/init.d, but could vary depending on distribution). For example:
for x in /proc/driver/cciss/cciss[0-9]*
do
echo "engage scsi" > $x
done
Once the SCSI core is engaged by the driver, it cannot be disengaged (except by unloading the driver, if it happens to be linked as a module.)
Note also that if no sequential access devices or medium changers are detected, the SCSI core will not be engaged by the action of the above script.
echo "rescan" > /proc/scsi/cciss0/1
This causes the driver to:
The driver will output messages indicating which devices have been added or removed and the controller, bus, target, and lun used to address each device. The driver then notifies the SCSI midlayer of these changes.
Note that the naming convention of the /proc filesystem entries contains a number in addition to the driver name (e.g., "cciss0" instead of just "cciss", which you might expect).
Note: Only sequential access devices and medium changers are presented as SCSI devices to the SCSI midlayer by the cciss driver. Specifically, physical SCSI disk drives are not presented to the SCSI midlayer. The only disk devices that are presented to the kernel are logical drives that the array controller constructs from regions on the physical drives. The logical drives are presented to the block layer (not to the SCSI midlayer). It is important for the driver to prevent the kernel from accessing the physical drives directly, since these drives are used by the array controller to construct the logical drives.
The cciss driver is a block driver as well as a SCSI driver and only the tape drives and medium changers are presented to the SCSI midlayer. Furthermore, unlike more straightforward SCSI drivers, disk I/O continues through the block side during the SCSI error-recovery process. Therefore, the cciss driver implements only the first two of these actions, aborting the command, and resetting the device. Note also that most tape drives will not oblige in aborting commands, and sometimes it appears they will not even obey a reset command, though in most circumstances they will. If the command cannot be aborted and the device cannot be reset, the device will be set offline.
In the event that the error-handling code is triggered and a tape drive is successfully reset or the tardy command is successfully aborted, the tape drive may still not allow I/O to continue until some command is issued that positions the tape to a known position. Typically you must rewind the tape (by issuing mt -f /dev/st0 rewind for example) before I/O can proceed again to a tape drive that was reset.
and Documentation/blockdev/cciss.txt and Documentation/ABI/testing/sysfs-bus-pci-devices-cciss in the Linux kernel source tree