#include <sys/types.h> #include <linux/userfaultfd.h> int userfaultfd(int flags);
Note: There is no glibc wrapper for this system call; see NOTES.
Once the userfaultfd object is configured, the application can use read(2) to receive userfaultfd notifications. The reads from userfaultfd may be blocking or non-blocking, depending on the value of flags used for the creation of the userfaultfd or subsequent calls to fcntl(2).
The following values may be bitwise ORed in flags to change the behavior of userfaultfd():
When the last file descriptor referring to a userfaultfd object is closed, all memory ranges that were registered with the object are unregistered and unread events are flushed.
It is possible for the faulting threads and the fault-handling threads to run in the context of different processes. In this case, these threads may belong to different programs, and the program that executes the faulting threads will not necessarily cooperate with the program that handles the page faults. In such non-cooperative mode, the process that monitors userfaultfd and handles page faults needs to be aware of the changes in the virtual memory layout of the faulting process to avoid memory corruption.
Starting from Linux 4.11, userfaultfd can also notify the fault-handling threads about changes in the virtual memory layout of the faulting process. In addition, if the faulting process invokes fork(2), the userfaultfd objects associated with the parent may be duplicated into the child process and the userfaultfd monitor will be notified (via the UFFD_EVENT_FORK described below) about the file descriptor associated with the userfault objects created for the child process, which allows the userfaultfd monitor to perform user-space paging for the child process. Unlike page faults which have to be synchronous and require an explicit or implicit wakeup, all other events are delivered asynchronously and the non-cooperative process resumes execution as soon as the userfaultfd manager executes read(2). The userfaultfd manager should carefully synchronize calls to UFFDIO_COPY with the processing of events.
The current asynchronous model of the event delivery is optimal for single threaded non-cooperative userfaultfd manager implementations.
After a successful UFFDIO_API operation, the application then registers memory address ranges using the UFFDIO_REGISTER ioctl(2) operation. After successful completion of a UFFDIO_REGISTER operation, a page fault occurring in the requested memory range, and satisfying the mode defined at the registration time, will be forwarded by the kernel to the user-space application. The application can then use the UFFDIO_COPY or UFFDIO_ZEROPAGE ioctl(2) operations to resolve the page fault.
Starting from Linux 4.14, if the application sets the UFFD_FEATURE_SIGBUS feature bit using the UFFDIO_API ioctl(2), no page-fault notification will be forwarded to user space. Instead a SIGBUS signal is delivered to the faulting process. With this feature, userfaultfd can be used for robustness purposes to simply catch any access to areas within the registered address range that do not have pages allocated, without having to listen to userfaultfd events. No userfaultfd monitor will be required for dealing with such memory accesses. For example, this feature can be useful for applications that want to prevent the kernel from automatically allocating pages and filling holes in sparse files when the hole is accessed through a memory mapping.
The UFFD_FEATURE_SIGBUS feature is implicitly inherited through fork(2) if used in combination with UFFD_FEATURE_FORK.
Details of the various ioctl(2) operations can be found in ioctl_userfaultfd(2).
Since Linux 4.11, events other than page-fault may enabled during UFFDIO_API operation.
Up to Linux 4.11, userfaultfd can be used only with anonymous private memory mappings. Since Linux 4.11, userfaultfd can be also used with hugetlbfs and shared memory mappings.
struct uffd_msg {
__u8 event; /* Type of event */
...
union {
struct {
__u64 flags; /* Flags describing fault */
__u64 address; /* Faulting address */
} pagefault;
struct { /* Since Linux 4.11 */
__u32 ufd; /* Userfault file descriptor
of the child process */
} fork;
struct { /* Since Linux 4.11 */
__u64 from; /* Old address of remapped area */
__u64 to; /* New address of remapped area */
__u64 len; /* Original mapping length */
} remap;
struct { /* Since Linux 4.11 */
__u64 start; /* Start address of removed area */
__u64 end; /* End address of removed area */
} remove;
...
} arg;
/* Padding fields omitted */
} __packed;
If multiple events are available and the supplied buffer is large enough, read(2) returns as many events as will fit in the supplied buffer. If the buffer supplied to read(2) is smaller than the size of the uffd_msg structure, the read(2) fails with the error EINVAL.
The fields set in the uffd_msg structure are as follows:
A read(2) on a userfaultfd file descriptor can fail with the following errors:
If the O_NONBLOCK flag is enabled in the associated open file description, the userfaultfd file descriptor can be monitored with poll(2), select(2), and epoll(7). When events are available, the file descriptor indicates as readable. If the O_NONBLOCK flag is not enabled, then poll(2) (always) indicates the file as having a POLLERR condition, and select(2) indicates the file descriptor as both readable and writable.
The support for hugetlbfs and shared memory areas and non-page-fault events was added in Linux 4.11
The userfaultfd mechanism can be used as an alternative to traditional user-space paging techniques based on the use of the SIGSEGV signal and mmap(2). It can also be used to implement lazy restore for checkpoint/restore mechanisms, as well as post-copy migration to allow (nearly) uninterrupted execution when transferring virtual machines and Linux containers from one host to another.
The program takes one command-line argument, which is the number of pages that will be created in a mapping whose page faults will be handled via userfaultfd. After creating a userfaultfd object, the program then creates an anonymous private mapping of the specified size and registers the address range of that mapping using the UFFDIO_REGISTER ioctl(2) operation. The program then creates a second thread that will perform the task of handling page faults.
The main thread then walks through the pages of the mapping fetching bytes from successive pages. Because the pages have not yet been accessed, the first access of a byte in each page will trigger a page-fault event on the userfaultfd file descriptor.
Each of the page-fault events is handled by the second thread, which sits in a loop processing input from the userfaultfd file descriptor. In each loop iteration, the second thread first calls poll(2) to check the state of the file descriptor, and then reads an event from the file descriptor. All such events should be UFFD_EVENT_PAGEFAULT events, which the thread handles by copying a page of data into the faulting region using the UFFDIO_COPY ioctl(2) operation.
The following is an example of what we see when running the program:
$ ./userfaultfd_demo 3 Address returned by mmap() = 0x7fd30106c000
fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106c00f
(uffdio_copy.copy returned 4096)
Read address 0x7fd30106c00f in main(): A
Read address 0x7fd30106c40f in main(): A
Read address 0x7fd30106c80f in main(): A
Read address 0x7fd30106cc0f in main(): A
fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106d00f
(uffdio_copy.copy returned 4096)
Read address 0x7fd30106d00f in main(): B
Read address 0x7fd30106d40f in main(): B
Read address 0x7fd30106d80f in main(): B
Read address 0x7fd30106dc0f in main(): B
fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106e00f
(uffdio_copy.copy returned 4096)
Read address 0x7fd30106e00f in main(): C
Read address 0x7fd30106e40f in main(): C
Read address 0x7fd30106e80f in main(): C
Read address 0x7fd30106ec0f in main(): C
Licensed under the GNU General Public License version 2 or later.
*/
#define _GNU_SOURCE
#include <inttypes.h>
#include <sys/types.h>
#include <stdio.h>
#include <linux/userfaultfd.h>
#include <pthread.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <signal.h>
#include <poll.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <poll.h>
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)
static int page_size;
static void *
fault_handler_thread(void *arg)
{
static struct uffd_msg msg; /* Data read from userfaultfd */
static int fault_cnt = 0; /* Number of faults so far handled */
long uffd; /* userfaultfd file descriptor */
static char *page = NULL;
struct uffdio_copy uffdio_copy;
ssize_t nread;
uffd = (long) arg;
/* Create a page that will be copied into the faulting region. */
if (page == NULL) {
page = mmap(NULL, page_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (page == MAP_FAILED)
errExit("mmap");
}
/* Loop, handling incoming events on the userfaultfd
file descriptor. */
for (;;) {
/* See what poll() tells us about the userfaultfd. */
struct pollfd pollfd;
int nready;
pollfd.fd = uffd;
pollfd.events = POLLIN;
nready = poll(&pollfd, 1, -1);
if (nready == -1)
errExit("poll");
printf("\nfault_handler_thread():\n");
printf(" poll() returns: nready = %d; "
"POLLIN = %d; POLLERR = %d\n", nready,
(pollfd.revents & POLLIN) != 0,
(pollfd.revents & POLLERR) != 0);
/* Read an event from the userfaultfd. */
nread = read(uffd, &msg, sizeof(msg));
if (nread == 0) {
printf("EOF on userfaultfd!\n");
exit(EXIT_FAILURE);
}
if (nread == -1)
errExit("read");
/* We expect only one kind of event; verify that assumption. */
if (msg.event != UFFD_EVENT_PAGEFAULT) {
fprintf(stderr, "Unexpected event on userfaultfd\n");
exit(EXIT_FAILURE);
}
/* Display info about the page-fault event. */
printf(" UFFD_EVENT_PAGEFAULT event: ");
printf("flags = %"PRIx64"; ", msg.arg.pagefault.flags);
printf("address = %"PRIx64"\n", msg.arg.pagefault.address);
/* Copy the page pointed to by 'page' into the faulting
region. Vary the contents that are copied in, so that it
is more obvious that each fault is handled separately. */
memset(page, 'A' + fault_cnt % 20, page_size);
fault_cnt++;
uffdio_copy.src = (unsigned long) page;
/* We need to handle page faults in units of pages(!).
So, round faulting address down to page boundary. */
uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address &
~(page_size - 1);
uffdio_copy.len = page_size;
uffdio_copy.mode = 0;
uffdio_copy.copy = 0;
if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)
errExit("ioctl-UFFDIO_COPY");
printf(" (uffdio_copy.copy returned %"PRId64")\n",
uffdio_copy.copy);
}
}
int
main(int argc, char *argv[])
{
long uffd; /* userfaultfd file descriptor */
char *addr; /* Start of region handled by userfaultfd */
uint64_t len; /* Length of region handled by userfaultfd */
pthread_t thr; /* ID of thread that handles page faults */
struct uffdio_api uffdio_api;
struct uffdio_register uffdio_register;
int s;
if (argc != 2) {
fprintf(stderr, "Usage: %s num-pages\n", argv[0]);
exit(EXIT_FAILURE);
}
page_size = sysconf(_SC_PAGE_SIZE);
len = strtoull(argv[1], NULL, 0) * page_size;
/* Create and enable userfaultfd object. */
uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
if (uffd == -1)
errExit("userfaultfd");
uffdio_api.api = UFFD_API;
uffdio_api.features = 0;
if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1)
errExit("ioctl-UFFDIO_API");
/* Create a private anonymous mapping. The memory will be
demand-zero paged--that is, not yet allocated. When we
actually touch the memory, it will be allocated via
the userfaultfd. */
addr = mmap(NULL, len, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED)
errExit("mmap");
printf("Address returned by mmap() = %p\n", addr);
/* Register the memory range of the mapping we just created for
handling by the userfaultfd object. In mode, we request to track
missing pages (i.e., pages that have not yet been faulted in). */
uffdio_register.range.start = (unsigned long) addr;
uffdio_register.range.len = len;
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1)
errExit("ioctl-UFFDIO_REGISTER");
/* Create a thread that will process the userfaultfd events. */
s = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd);
if (s != 0) {
errno = s;
errExit("pthread_create");
}
/* Main thread now touches memory in the mapping, touching
locations 1024 bytes apart. This will trigger userfaultfd
events for all pages in the region. */
int l;
l = 0xf; /* Ensure that faulting address is not on a page
boundary, in order to test that we correctly
handle that case in fault_handling_thread(). */
while (l < len) {
char c = addr[l];
printf("Read address %p in main(): ", addr + l);
printf("%c\n", c);
l += 1024;
usleep(100000); /* Slow things down a little */
}
Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree