CMakePackageConfigHelpers¶
Helpers functions for creating config files that can be included by other projects to find and use a package.
Adds the configure_package_config_file()
and
write_basic_package_version_file()
commands.
Generating a Package Configuration File¶
-
configure_package_config_file
¶ Create a config file for a project:
configure_package_config_file(<input> <output> INSTALL_DESTINATION <path> [PATH_VARS <var1> <var2> ... <varN>] [NO_SET_AND_CHECK_MACRO] [NO_CHECK_REQUIRED_COMPONENTS_MACRO] [INSTALL_PREFIX <path>] )
configure_package_config_file()
should be used instead of the plain
configure_file()
command when creating the <Name>Config.cmake
or <Name>-config.cmake
file for installing a project or library. It helps
making the resulting package relocatable by avoiding hardcoded paths in the
installed Config.cmake
file.
In a FooConfig.cmake
file there may be code like this to make the install
destinations know to the using project:
set(FOO_INCLUDE_DIR "@CMAKE_INSTALL_FULL_INCLUDEDIR@" )
set(FOO_DATA_DIR "@CMAKE_INSTALL_PREFIX@/@RELATIVE_DATA_INSTALL_DIR@" )
set(FOO_ICONS_DIR "@CMAKE_INSTALL_PREFIX@/share/icons" )
#...logic to determine installedPrefix from the own location...
set(FOO_CONFIG_DIR "${installedPrefix}/@CONFIG_INSTALL_DIR@" )
All 4 options shown above are not sufficient, since the first 3 hardcode the
absolute directory locations, and the 4th case works only if the logic to
determine the installedPrefix
is correct, and if CONFIG_INSTALL_DIR
contains a relative path, which in general cannot be guaranteed. This has the
effect that the resulting FooConfig.cmake
file would work poorly under
Windows and OSX, where users are used to choose the install location of a
binary package at install time, independent from how
CMAKE_INSTALL_PREFIX
was set at build/cmake time.
Using configure_package_config_file
helps. If used correctly, it makes
the resulting FooConfig.cmake
file relocatable. Usage:
- write a
FooConfig.cmake.in
file as you are used to - insert a line containing only the string
@PACKAGE_INIT@
- instead of
set(FOO_DIR "@SOME_INSTALL_DIR@")
, useset(FOO_DIR "@PACKAGE_SOME_INSTALL_DIR@")
(this must be after the@PACKAGE_INIT@
line) - instead of using the normal
configure_file()
, useconfigure_package_config_file()
The <input>
and <output>
arguments are the input and output file, the
same way as in configure_file()
.
The <path>
given to INSTALL_DESTINATION
must be the destination where
the FooConfig.cmake
file will be installed to. This path can either be
absolute, or relative to the INSTALL_PREFIX
path.
The variables <var1>
to <varN>
given as PATH_VARS
are the
variables which contain install destinations. For each of them the macro will
create a helper variable PACKAGE_<var...>
. These helper variables must be
used in the FooConfig.cmake.in
file for setting the installed location.
They are calculated by configure_package_config_file
so that they are
always relative to the installed location of the package. This works both for
relative and also for absolute locations. For absolute locations it works
only if the absolute location is a subdirectory of INSTALL_PREFIX
.
If the INSTALL_PREFIX
argument is passed, this is used as base path to
calculate all the relative paths. The <path>
argument must be an absolute
path. If this argument is not passed, the CMAKE_INSTALL_PREFIX
variable will be used instead. The default value is good when generating a
FooConfig.cmake file to use your package from the install tree. When
generating a FooConfig.cmake file to use your package from the build tree this
option should be used.
By default configure_package_config_file
also generates two helper macros,
set_and_check()
and check_required_components()
into the
FooConfig.cmake
file.
set_and_check()
should be used instead of the normal set()
command for
setting directories and file locations. Additionally to setting the variable
it also checks that the referenced file or directory actually exists and fails
with a FATAL_ERROR
otherwise. This makes sure that the created
FooConfig.cmake
file does not contain wrong references.
When using the NO_SET_AND_CHECK_MACRO
, this macro is not generated
into the FooConfig.cmake
file.
check_required_components(<package_name>)
should be called at the end of
the FooConfig.cmake
file if the package supports components. This macro
checks whether all requested, non-optional components have been found, and if
this is not the case, sets the Foo_FOUND
variable to FALSE
, so that
the package is considered to be not found. It does that by testing the
Foo_<Component>_FOUND
variables for all requested required components.
When using the NO_CHECK_REQUIRED_COMPONENTS_MACRO
option, this macro is
not generated into the FooConfig.cmake
file.
For an example see below the documentation for
write_basic_package_version_file()
.
Generating a Package Version File¶
-
write_basic_package_version_file
¶ Create a version file for a project:
write_basic_package_version_file(<filename> [VERSION <major.minor.patch>] COMPATIBILITY <AnyNewerVersion|SameMajorVersion|ExactVersion> )
Writes a file for use as <package>ConfigVersion.cmake
file to
<filename>
. See the documentation of find_package()
for
details on this.
<filename>
is the output filename, it should be in the build tree.
<major.minor.patch>
is the version number of the project to be installed.
If no VERSION
is given, the PROJECT_VERSION
variable is used.
If this hasn’t been set, it errors out.
The COMPATIBILITY
mode AnyNewerVersion
means that the installed
package version will be considered compatible if it is newer or exactly the
same as the requested version. This mode should be used for packages which
are fully backward compatible, also across major versions.
If SameMajorVersion
is used instead, then the behaviour differs from
AnyNewerVersion
in that the major version number must be the same as
requested, e.g. version 2.0 will not be considered compatible if 1.0 is
requested. This mode should be used for packages which guarantee backward
compatibility within the same major version.
If ExactVersion
is used, then the package is only considered compatible if
the requested version matches exactly its own version number (not considering
the tweak version). For example, version 1.2.3 of a package is only
considered compatible to requested version 1.2.3. This mode is for packages
without compatibility guarantees.
If your project has more elaborated version matching rules, you will need to
write your own custom ConfigVersion.cmake
file instead of using this
macro.
Internally, this macro executes configure_file()
to create the
resulting version file. Depending on the COMPATIBLITY
, either the file
BasicConfigVersion-SameMajorVersion.cmake.in
or
BasicConfigVersion-AnyNewerVersion.cmake.in
is used. Please note that
these two files are internal to CMake and you should not call
configure_file()
on them yourself, but they can be used as starting
point to create more sophisticted custom ConfigVersion.cmake
files.
Example Generating Package Files¶
Example using both configure_package_config_file()
and
write_basic_package_version_file()
:
CMakeLists.txt
:
set(INCLUDE_INSTALL_DIR include/ ... CACHE )
set(LIB_INSTALL_DIR lib/ ... CACHE )
set(SYSCONFIG_INSTALL_DIR etc/foo/ ... CACHE )
#...
include(CMakePackageConfigHelpers)
configure_package_config_file(FooConfig.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake
INSTALL_DESTINATION ${LIB_INSTALL_DIR}/Foo/cmake
PATH_VARS INCLUDE_INSTALL_DIR SYSCONFIG_INSTALL_DIR)
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake
VERSION 1.2.3
COMPATIBILITY SameMajorVersion )
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake
${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake
DESTINATION ${LIB_INSTALL_DIR}/Foo/cmake )
FooConfig.cmake.in
:
set(FOO_VERSION x.y.z)
...
@PACKAGE_INIT@
...
set_and_check(FOO_INCLUDE_DIR "@PACKAGE_INCLUDE_INSTALL_DIR@")
set_and_check(FOO_SYSCONFIG_DIR "@PACKAGE_SYSCONFIG_INSTALL_DIR@")
check_required_components(Foo)