The Open Group Base Specifications Issue 7
IEEE Std 1003.1-2008, 2016 Edition
Copyright © 2001-2016 The IEEE and The Open Group

NAME

mlockall, munlockall - lock/unlock the address space of a process (REALTIME)

SYNOPSIS

[ML] [Option Start] #include <sys/mman.h>

int mlockall(int
flags);
int munlockall(void); [Option End]

DESCRIPTION

The mlockall() function shall cause all of the pages mapped by the address space of a process to be memory-resident until unlocked or until the process exits or execs another process image. The flags argument determines whether the pages to be locked are those currently mapped by the address space of the process, those that are mapped in the future, or both. The flags argument is constructed from the bitwise-inclusive OR of one or more of the following symbolic constants, defined in <sys/mman.h>:

MCL_CURRENT
Lock all of the pages currently mapped into the address space of the process.
MCL_FUTURE
Lock all of the pages that become mapped into the address space of the process in the future, when those mappings are established.

If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes the amount of locked memory to exceed the amount of available physical memory or any other implementation-defined limit, the behavior is implementation-defined. The manner in which the implementation informs the application of these situations is also implementation-defined.

The munlockall() function shall unlock all currently mapped pages of the address space of the process. Any pages that become mapped into the address space of the process after a call to munlockall() shall not be locked, unless there is an intervening call to mlockall() specifying MCL_FUTURE or a subsequent call to mlockall() specifying MCL_CURRENT. If pages mapped into the address space of the process are also mapped into the address spaces of other processes and are locked by those processes, the locks established by the other processes shall be unaffected by a call by this process to munlockall().

Upon successful return from the mlockall() function that specifies MCL_CURRENT, all currently mapped pages of the address space of the process shall be memory-resident and locked. Upon return from the munlockall() function, all currently mapped pages of the address space of the process shall be unlocked with respect to the address space of the process. The memory residency of unlocked pages is unspecified.

Appropriate privileges are required to lock process memory with mlockall().

RETURN VALUE

Upon successful completion, the mlockall() function shall return a value of zero. Otherwise, no additional memory shall be locked, and the function shall return a value of -1 and set errno to indicate the error. The effect of failure of mlockall() on previously existing locks in the address space is unspecified.

If it is supported by the implementation, the munlockall() function shall always return a value of zero. Otherwise, the function shall return a value of -1 and set errno to indicate the error.

ERRORS

The mlockall() function shall fail if:

[EAGAIN]
Some or all of the memory identified by the operation could not be locked when the call was made.
[EINVAL]
The flags argument is zero, or includes unimplemented flags.

The mlockall() function may fail if:

[ENOMEM]
Locking all of the pages currently mapped into the address space of the process would exceed an implementation-defined limit on the amount of memory that the process may lock.
[EPERM]
The calling process does not have appropriate privileges to perform the requested operation.

The following sections are informative.

EXAMPLES

None.

APPLICATION USAGE

None.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

exec, exit, fork, mlock, munmap

XBD <sys/mman.h>

CHANGE HISTORY

First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6

The mlockall() and munlockall() functions are marked as part of the Process Memory Locking option.

The [ENOSYS] error condition has been removed as stubs need not be provided if an implementation does not support the Process Memory Locking option.

End of informative text.

 

return to top of page

UNIX ® is a registered Trademark of The Open Group.
POSIX ® is a registered Trademark of The IEEE.
Copyright © 2001-2016 The IEEE and The Open Group, All Rights Reserved
[ Main Index | XBD | XSH | XCU | XRAT ]