Home Page
>
Learning the Java Language
>
Generics (Updated)
Answer to Questions and Exercises: Generics
- Write a generic method to count the number of elements in a collection that have a specific property (for example, odd integers, prime numbers, palindromes).
Answer:
public final class Algorithm {
public static <T> int countIf(Collection<T> c, UnaryPredicate<T> p) {
int count = 0;
for (T elem : c)
if (p.test(elem))
++count;
return count;
}
}
where the generic UnaryPredicate interface is defined as follows:
public interface UnaryPredicate<T> {
public boolean test(T obj);
}
For example, the following program counts the number of odd integers in an integer list:
import java.util.*;
class OddPredicate implements UnaryPredicate<Integer> {
public boolean test(Integer i) { return i % 2 != 0; }
}
public class Test {
public static void main(String[] args) {
Collection<Integer> ci = Arrays.asList(1, 2, 3, 4);
int count = Algorithm.countIf(ci, new OddPredicate());
System.out.println("Number of odd integers = " + count);
}
}
The program prints:
Number of odd integers = 2
- Will the following class compile? If not, why?
public final class Algorithm {
public static <T> T max(T x, T y) {
return x > y ? x : y;
}
}
Answer: No. The greater than (>) operator applies only to primitive numeric types.
- Write a generic method to exchange the positions of two different elements in an array.
Answer:
public final class Algorithm {
public static <T> void swap(T[] a, int i, int j) {
T temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
- If the compiler erases all type parameters at compile time, why should you use generics?
Answer: You should use generics because:
- The Java compiler enforces tighter type checks on generic code at compile time.
- Generics support programming types as parameters.
- Generics enable you to implement generic algorithms.
- What is the following class converted to after type erasure?
public class Pair<K, V> {
public Pair(K key, V value) {
this.key = key;
this.value = value;
}
public K getKey(); { return key; }
public V getValue(); { return value; }
public void setKey(K key) { this.key = key; }
public void setValue(V value) { this.value = value; }
private K key;
private V value;
}
Answer:
public class Pair {
public Pair(Object key, Object value) {
this.key = key;
this.value = value;
}
public Object getKey() { return key; }
public Object getValue() { return value; }
public void setKey(Object key) { this.key = key; }
public void setValue(Object value) { this.value = value; }
private Object key;
private Object value;
}
- What is the following method converted to after type erasure?
public static <T extends Comparable<T>>
int findFirstGreaterThan(T[] at, T elem) {
// ...
}
Answer:
public static int findFirstGreaterThan(Comparable[] at, Comparable elem) {
// ...
}
- Will the following method compile? If not, why?
public static void print(List<? extends Number> list) {
for (Number n : list)
System.out.print(n + " ");
System.out.println();
}
Answer: Yes.
- Write a generic method to find the maximal element in the range [begin, end) of a list.
Answer:
import java.util.*;
public final class Algorithm {
public static <T extends Object & Comparable<? super T>>
T max(List<? extends T> list, int begin, int end) {
T maxElem = list.get(begin);
for (++begin; begin < end; ++begin)
if (maxElem.compareTo(list.get(begin)) < 0)
maxElem = list.get(begin);
return maxElem;
}
}
- Will the following class compile? If not, why?
public class Singleton<T> {
public static T getInstance() {
if (instance == null)
instance = new Singleton<T>();
return instance;
}
private static T instance = null;
}
Answer: No. You cannot create a static field of the type parameter T.
- Given the following classes:
class Shape { /* ... */ }
class Circle extends Shape { /* ... */ }
class Rectangle extends Shape { /* ... */ }
class Node<T> { /* ... */ }
Will the following code compile? If not, why?
Node<Circle> nc = new Node<>();
Node<Shape> ns = nc;
Answer: No. Because Node<Circle> is not a subtype of Node<Shape>.
- Consider this class:
class Node<T> implements Comparable<T> {
public int compareTo(T obj) { /* ... */ }
// ...
}
Will the following code compile? If not, why?
Answer: Yes.
Node<String> node = new Node<>();
Comparable<String> comp = node;
- How do you invoke the following method to find the first integer in a list that is relatively prime to a list of specified integers?
public static <T>
int findFirst(List<T> list, int begin, int end, UnaryPredicate<T> p)
Note that two integers a and b are relatively prime if gcd(a, b) = 1, where gcd is short for greatest common divisor.
Answer:
import java.util.*;
public final class Algorithm {
public static <T>
int findFirst(List<T> list, int begin, int end, UnaryPredicate<T> p) {
for (; begin < end; ++begin)
if (p.test(list.get(begin)))
return begin;
return -1;
}
// x > 0 and y > 0
public static int gcd(int x, int y) {
for (int r; (r = x % y) != 0; x = y, y = r) { }
return y;
}
}
The generic UnaryPredicate interface is defined as follows:
public interface UnaryPredicate<T> {
public boolean test(T obj);
}
The following program tests the findFirst method:
import java.util.*;
class RelativelyPrimePredicate implements UnaryPredicate<Integer> {
public RelativelyPrimePredicate(Collection<Integer> c) {
this.c = c;
}
public boolean test(Integer x) {
for (Integer i : c)
if (Algorithm.gcd(x, i) != 1)
return false;
return c.size() > 0;
}
private Collection<Integer> c;
}
public class Test {
public static void main(String[] args) throws Exception {
List<Integer> li = Arrays.asList(3, 4, 6, 8, 11, 15, 28, 32);
Collection<Integer> c = Arrays.asList(7, 18, 19, 25);
UnaryPredicate<Integer> p = new RelativelyPrimePredicate(c);
int i = ALgorithm.findFirst(li, 0, li.size(), p);
if (i != -1) {
System.out.print(li.get(i) + " is relatively prime to ");
for (Integer k : c)
System.out.print(k + " ");
System.out.println();
}
}
}
The program prints:
11 is relatively prime to 7 18 19 25