// Copyright (C) 2003 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_SEQUENCE_KERNEl_1_ #define DLIB_SEQUENCE_KERNEl_1_ #include "sequence_kernel_abstract.h" #include "../algs.h" #include "../interfaces/enumerable.h" #include "../interfaces/remover.h" #include "../serialize.h" namespace dlib { template < typename T, typename mem_manager = default_memory_manager > class sequence_kernel_1 : public enumerable<T>, public remover<T> { /*! INITIAL VALUE - tree_root == 0 - tree_size == 0 - at_start_ == true - current_element == 0 - stack == array of 50 node pointers - stack_pos == 0 CONVENTION - if (tree_size > 0) - tree_root == pointer to the root node of the binary search tree - else - tree_root == 0 - stack[stack_pos-1] == pop() - current_element_valid() == (current_element != 0) - at_start_ == at_start() - if (current_element != 0 && current_element != tree_root) then - stack[stack_pos-1] == the parent of the node pointed to by current_element - if (current_element_valid()) then - element() == current_element->item - tree_size == size() - (*this)[i] == return_reference(i) - for all nodes: - left_size == the number of elements in the left subtree. - left points to the left subtree or 0 if there is no left subtree. - right points to the right subtree or 0 if there is no right subtree. - all elements in a left subtree have a position in the sequence < that of the root of the current tree. - all elements in a right subtree have a position in the sequence > that of the root of the current tree. - item is the sequence element for that node. - balance: - balance == 0 if both subtrees have the same height - balance == -1 if the left subtree has a height that is greater than the height of the right subtree by 1 - balance == 1 if the right subtree has a height that is greater than the height of the left subtree by 1 - for all subtrees: - the height of the left and right subtrees differ by at most one !*/ class node { public: node* left; node* right; unsigned long left_size; T item; signed char balance; }; public: typedef T type; typedef mem_manager mem_manager_type; sequence_kernel_1 ( ) : tree_root(0), tree_size(0), stack(ppool.allocate_array(50)), current_element(0), at_start_(true), stack_pos(0) {} virtual ~sequence_kernel_1 ( ); inline void clear ( ); void add ( unsigned long pos, T& item ); void remove ( unsigned long pos, T& item ); void cat ( sequence_kernel_1& item ); const T& operator[] ( unsigned long pos ) const; T& operator[] ( unsigned long pos ); inline void swap ( sequence_kernel_1& item ); // functions from the remover interface inline void remove_any ( T& item ); // functions from the enumerable interface inline unsigned long size ( ) const; bool at_start ( ) const; inline void reset ( ) const; bool current_element_valid ( ) const; const T& element ( ) const; T& element ( ); bool move_next ( ) const; private: void delete_nodes ( node* t ); /*! requires - t == a pointer to a valid node ensures - deletes t and all its sub nodes. !*/ inline void rotate_left ( node*& t ); /*! requires - t->balance == 2 - t->right->balance == 0 or 1 ensures - #t is still a binary search tree - #t->balance is between 1 and -1 - #t now has a height smaller by 1 if #t->balance == 0 !*/ inline void rotate_right ( node*& t ); /*! requires - t->balance == -2 - t->left->balance == 0 or -1 ensures - #t is still a binary search tree - #t->balance is between 1 and -1 - #t now has a height smaller by 1 if #t->balance == 0 !*/ inline void double_rotate_right ( node*& t ); /*! requires - #t->balance == -2 - #t->left->balance == 1 ensures - #t is still a binary search tree - #t now has a balance of 0 - #t now has a height smaller by 1 !*/ inline void double_rotate_left ( node*& t ); /*! requires - #t->balance == 2 - #t->right->balance == -1 ensures - #t is still a binary search tree - #t now has a balance of 0 and - #t now has a height smaller by 1 !*/ bool remove_least_element_in_tree ( node*& t, T& item ); /*! requires - t != 0 (i.e. there must be something in the tree to remove) ensures - the least node in t has been removed - the least node element in t has been put into #item - #t is still a binary search tree - returns false if the height of the tree has not changed - returns true if the height of the tree has shrunk by one !*/ bool add_to_tree ( node*& t, unsigned long pos, T& item ); /*! requires - pos <= the number of items in the tree ensures - item has been added to #t - #return_reference(pos) == item - the convention is still satisfied - #item has an initial value for its type - returns false if the height of the tree has not changed - returns true if the height of the tree has grown by one !*/ bool remove_from_tree ( node*& t, unsigned long pos, T& item ); /*! requires - there is an item in the tree associated with pos ensures - the element in the tree associated with pos has been removed and put into #item - the convention is still satisfied - returns false if the height of the tree has not changed - returns true if the height of the tree has shrunk by one !*/ const T& return_reference ( const node* t, unsigned long pos ) const; /*! requires - there is an item in the tree associated with pos ensures - returns a const reference to the item in the tree associated with pos !*/ T& return_reference ( node* t, unsigned long pos ); /*! requires - there is an item in the tree associated with pos ensures - returns a non-const reference to the item in the tree associated with pos !*/ inline bool keep_node_balanced ( node*& t ); /*! requires - t != 0 ensures - if (t->balance is < 1 or > 1) then - keep_node_balanced() will ensure that t->balance == 0, -1, or 1 - returns true if it made the tree one height shorter - returns false if it didn't change the height !*/ void push ( node* n ) const { stack[stack_pos] = n; ++stack_pos; } /*! ensures - pushes n onto the stack !*/ node* pop ( ) const { --stack_pos; return stack[stack_pos]; } /*! ensures - pops the top of the stack and returns it !*/ // data members typename mem_manager::template rebind<node>::other pool; typename mem_manager::template rebind<node*>::other ppool; node* tree_root; unsigned long tree_size; mutable node** stack; mutable node* current_element; mutable bool at_start_; mutable unsigned char stack_pos; // restricted functions sequence_kernel_1(sequence_kernel_1&); // copy constructor sequence_kernel_1& operator=(sequence_kernel_1&); // assignment operator }; template < typename T, typename mem_manager > inline void swap ( sequence_kernel_1<T,mem_manager>& a, sequence_kernel_1<T,mem_manager>& b ) { a.swap(b); } template < typename T, typename mem_manager > void deserialize ( sequence_kernel_1<T,mem_manager>& item, std::istream& in ) { try { item.clear(); unsigned long size; deserialize(size,in); T temp; for (unsigned long i = 0; i < size; ++i) { deserialize(temp,in); item.add(i,temp); } } catch (serialization_error e) { item.clear(); throw serialization_error(e.info + "\n while deserializing object of type sequence_kernel_1"); } } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // member function definitions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > sequence_kernel_1<T,mem_manager>:: ~sequence_kernel_1 ( ) { ppool.deallocate_array(stack); if (tree_size > 0) { delete_nodes(tree_root); } } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: swap ( sequence_kernel_1<T,mem_manager>& item ) { exchange(stack,item.stack); exchange(stack_pos,item.stack_pos); pool.swap(item.pool); ppool.swap(item.ppool); node* tree_root_temp = item.tree_root; unsigned long tree_size_temp = item.tree_size; node* current_element_temp = item.current_element; bool at_start_temp = item.at_start_; item.tree_root = tree_root; item.tree_size = tree_size; item.current_element = current_element; item.at_start_ = at_start_; tree_root = tree_root_temp; tree_size = tree_size_temp; current_element = current_element_temp; at_start_ = at_start_temp; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > unsigned long sequence_kernel_1<T,mem_manager>:: size ( ) const { return tree_size; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > const T& sequence_kernel_1<T,mem_manager>:: operator[] ( unsigned long pos ) const { return return_reference(tree_root,pos); } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > T& sequence_kernel_1<T,mem_manager>:: operator[] ( unsigned long pos ) { return return_reference(tree_root,pos); } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: add ( unsigned long pos, T& item ) { add_to_tree(tree_root,pos,item); ++tree_size; // reset the enumerator reset(); } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: remove ( unsigned long pos, T& item ) { remove_from_tree(tree_root,pos,item); --tree_size; // reset the enumerator reset(); } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: cat ( sequence_kernel_1<T,mem_manager>& item ) { for (unsigned long i = 0; i < item.tree_size; ++i) { add_to_tree( tree_root, tree_size, return_reference(item.tree_root,i) ); ++tree_size; } item.clear(); // reset the enumerator reset(); } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: clear ( ) { if (tree_size > 0) { delete_nodes(tree_root); tree_root = 0; tree_size = 0; } // reset the enumerator reset(); } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // enumerable function definitions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: at_start ( ) const { return at_start_; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: reset ( ) const { at_start_ = true; current_element = 0; stack_pos = 0; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: current_element_valid ( ) const { return (current_element != 0); } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > const T& sequence_kernel_1<T,mem_manager>:: element ( ) const { return current_element->item; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > T& sequence_kernel_1<T,mem_manager>:: element ( ) { return current_element->item; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: move_next ( ) const { // if we haven't started iterating yet if (at_start_) { at_start_ = false; if (tree_size == 0) { return false; } else { // find the first element in the tree current_element = tree_root; node* temp = current_element->left; while (temp != 0) { push(current_element); current_element = temp; temp = current_element->left; } return true; } } else { if (current_element == 0) { return false; } else { node* temp; bool went_up; // true if we went up the tree from a child node to parent bool from_left = false; // true if we went up and were coming from a left child node // find the next element in the tree if (current_element->right != 0) { // go right and down temp = current_element; push(current_element); current_element = temp->right; went_up = false; } else { // go up to the parent if we can if (current_element == tree_root) { // in this case we have iterated over all the element of the tree current_element = 0; return false; } went_up = true; node* parent = pop(); from_left = (parent->left == current_element); // go up to parent current_element = parent; } while (true) { if (went_up) { if (from_left) { // in this case we have found the next node break; } else { if (current_element == tree_root) { // in this case we have iterated over all the elements // in the tree current_element = 0; return false; } // we should go up node* parent = pop(); from_left = (parent->left == current_element); current_element = parent; } } else { // we just went down to a child node if (current_element->left != 0) { // go left went_up = false; temp = current_element; push(current_element); current_element = temp->left; } else { // if there is no left child then we have found the next node break; } } } return true; } } } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // remover function definitions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: remove_any ( T& item ) { remove(0,item); } // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // private member function definitions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: rotate_left ( node*& t ) { // set the new balance numbers if (t->right->balance == 1) { t->balance = 0; t->right->balance = 0; } else { t->balance = 1; t->right->balance = -1; } // perform the rotation node* temp = t->right; t->right = temp->left; temp->left = t; t = temp; // set left_size to its correct value t->left_size += t->left->left_size + 1; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: rotate_right ( node*& t ) { // set the new balance numbers if (t->left->balance == -1) { t->balance = 0; t->left->balance = 0; } else { t->balance = -1; t->left->balance = 1; } // preform the rotation node* temp = t->left; t->left = temp->right; temp->right = t; t = temp; // set left_size to its correct value t->right->left_size -= t->left_size + 1; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: double_rotate_right ( node*& t ) { node* temp = t; t = t->left->right; temp->left->right = t->left; t->left = temp->left; temp->left = t->right; t->right = temp; if (t->balance < 0) { t->left->balance = 0; t->right->balance = 1; } else if (t->balance > 0) { t->left->balance = -1; t->right->balance = 0; } else { t->left->balance = 0; t->right->balance = 0; } t->balance = 0; // set left_size to its correct value t->left_size += t->left->left_size + 1; t->right->left_size -= t->left_size + 1; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: double_rotate_left ( node*& t ) { node* temp = t; t = t->right->left; temp->right->left = t->right; t->right = temp->right; temp->right = t->left; t->left = temp; if (t->balance < 0) { t->left->balance = 0; t->right->balance = 1; } else if (t->balance > 0) { t->left->balance = -1; t->right->balance = 0; } else { t->left->balance = 0; t->right->balance = 0; } t->balance = 0; // set left_size to its correct value t->right->left_size -= t->left_size + 1; t->left_size += t->left->left_size + 1; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: remove_least_element_in_tree ( node*& t, T& item ) { // make a reference to the current node so we don't have to dereference // a pointer a bunch of times node& tree = *t; // if the left tree is an empty tree if ( tree.left == 0) { // swap nodes element into item exchange(tree.item,item); // plug hole left by removing this node t = tree.right; // delete the node that was just removed tree.right = 0; delete_nodes(&tree); // return that the height of this part of the tree has decreased return true; } else { // subtract one from the left size --tree.left_size; // keep going left // if remove made the tree one height shorter if ( remove_least_element_in_tree(tree.left,item) ) { // if this caused the current tree to strink then report that if ( tree.balance == -1) { ++tree.balance; return true; } else { ++tree.balance; return keep_node_balanced(t); } } return false; } } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: add_to_tree ( node*& t, unsigned long pos, T& item ) { // if found place to add if (t == 0) { // create a node to add new item into t = pool.allocate(); // make a reference to the current node so we don't have to dereference // a pointer a bunch of times node& tree = *t; // set left and right pointers to 0 to indicate that there are no // left or right subtrees tree.left = 0; tree.right = 0; tree.balance = 0; tree.left_size = 0; // put item into t exchange(item,tree.item); // indicate that the height of this tree has increased return true; } else // keep looking for a place to add the new item { // make a reference to the current node so we don't have to dereference // a pointer a bunch of times node& tree = *t; signed char old_balance = tree.balance; // add the new item to whatever subtree it should go into if ( pos < tree.left_size + 1 ) { tree.balance -= add_to_tree(tree.left,pos,item); ++tree.left_size; } else tree.balance += add_to_tree(tree.right,pos - tree.left_size - 1,item); // if the tree was balanced to start with if (old_balance == 0) { // if its not balanced anymore then it grew in height if (tree.balance != 0) return true; else return false; } else { // if the tree is now balanced then it didn't grow if (tree.balance == 0) { return false; } else { // if the tree needs to be balanced if (tree.balance != old_balance) { return !keep_node_balanced(t); } // if there has been no change in the heights else { return false; } } } } } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: remove_from_tree ( node*& t, unsigned long pos, T& item ) { // make a reference to the current node so we don't have to dereference // a pointer a bunch of times node& tree = *t; // if item is on the left if (pos < tree.left_size) { // adjust the left size --tree.left_size; // if the left side of the tree has the greatest height if (tree.balance == -1) { tree.balance += remove_from_tree(tree.left,pos,item); return !tree.balance; } else { tree.balance += remove_from_tree(tree.left,pos,item); return keep_node_balanced(t); } } // if item is found else if (pos == tree.left_size) { // if there is no left node if (tree.left == 0) { // swap nodes element into item exchange(tree.item,item); // plug hole left by removing this node and free memory t = tree.right; // plug hole with right subtree // delete old node tree.right = 0; delete_nodes(&tree); // indicate that the height has changed return true; } // if there is no right node else if (tree.right == 0) { // swap nodes element into item exchange(tree.item,item); // plug hole left by removing this node and free memory t = tree.left; // plug hole with left subtree // delete old node tree.left = 0; delete_nodes(&tree); // indicate that the height of this tree has changed return true; } // if there are both a left and right sub node else { // get an element that can replace the one being removed and do this // if it made the right subtree shrink by one if (remove_least_element_in_tree(tree.right,item)) { // adjust the tree height --tree.balance; // put the element into item copy and also plug the // hole with the smallest element from the right. exchange(item,tree.item); // if the height of the current tree has dropped by one if (tree.balance == 0) { return true; } else { return keep_node_balanced(t); } } // else this remove did not effect the height of this tree else { // put the element into item copy and also plug the // hole with the smallest element from the right. exchange(item,tree.item); return false; } } } // if item is on the right else { // if the right side of the tree has the greatest height if (tree.balance == 1) { tree.balance -= remove_from_tree(tree.right,pos - tree.left_size - 1,item); return !tree.balance; } else { tree.balance -= remove_from_tree(tree.right,pos - tree.left_size - 1,item); return keep_node_balanced(t); } } } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > T& sequence_kernel_1<T,mem_manager>:: return_reference ( node* t, unsigned long pos ) { while (true) { // if we have found the node if (pos == t->left_size) return t->item; if (pos < t->left_size) { // go left t = t->left; } else { // go right pos -= t->left_size+1; t = t->right; } } } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > const T& sequence_kernel_1<T,mem_manager>:: return_reference ( const node* t, unsigned long pos ) const { while (true) { // if we have found the node if (pos == t->left_size) return t->item; if (pos < t->left_size) { // go left t = t->left; } else { // go right pos -= t->left_size+1; t = t->right; } } } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > bool sequence_kernel_1<T,mem_manager>:: keep_node_balanced ( node*& t ) { // make a reference to the current node so we don't have to dereference // a pointer a bunch of times node& tree = *t; // if tree does not need to be balanced then return false if (tree.balance == 0) return false; // if tree needs to be rotated left if (tree.balance == 2) { if (tree.right->balance >= 0) rotate_left(t); else double_rotate_left(t); } // else if the tree needs to be rotated right else if (tree.balance == -2) { if (tree.left->balance <= 0) rotate_right(t); else double_rotate_right(t); } if (t->balance == 0) return true; else return false; } // ---------------------------------------------------------------------------------------- template < typename T, typename mem_manager > void sequence_kernel_1<T,mem_manager>:: delete_nodes ( node* t ) { if (t->left) delete_nodes(t->left); if (t->right) delete_nodes(t->right); pool.deallocate(t); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_SEQUENCE_KERNEl_1_