// Copyright (C) 2008 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_QUANTUM_COMPUTINg_ABSTRACT_ #ifdef DLIB_QUANTUM_COMPUTINg_ABSTRACT_ #include <complex> #include "../matrix.h" #include "../rand.h" namespace dlib { // ---------------------------------------------------------------------------------------- typedef std::complex<double> qc_scalar_type; // ---------------------------------------------------------------------------------------- class quantum_register { /*! INITIAL VALUE - num_bits() == 1 - state_vector().nr() == 2 - state_vector().nc() == 1 - state_vector()(0) == 1 - state_vector()(1) == 0 - probability_of_bit(0) == 0 - i.e. This register represents a single quantum bit and it is completely in the 0 state. WHAT THIS OBJECT REPRESENTS This object represents a set of quantum bits. !*/ public: quantum_register( ); /*! ensures - this object is properly initialized !*/ int num_bits ( ) const; /*! ensures - returns the number of quantum bits in this register !*/ void set_num_bits ( int new_num_bits ); /*! requires - 1 <= new_num_bits <= 30 ensures - #num_bits() == new_num_bits - #state_vector().nr() == 2^new_num_bits (i.e. the size of the state_vector is exponential in the number of bits in a register) - for all valid i: - probability_of_bit(i) == 0 !*/ void zero_all_bits( ); /*! ensures - for all valid i: - probability_of_bit(i) == 0 !*/ void append ( const quantum_register& reg ); /*! ensures - #num_bits() == num_bits() + reg.num_bits() - #this->state_vector() == tensor_product(this->state_vector(), reg.state_vector()) - The original bits in *this become the high order bits of the resulting register and all the bits in reg end up as the low order bits in the resulting register. !*/ double probability_of_bit ( int bit ) const; /*! requires - 0 <= bit < num_bits() ensures - returns the probability of measuring the given bit and it being in the 1 state. - The returned value is also equal to the sum of norm(state_vector()(i)) for all i where the bit'th bit in i is set to 1. (note that the lowest order bit is bit 0) !*/ template <typename rand_type> bool measure_bit ( int bit, rand_type& rnd ); /*! requires - 0 <= bit < num_bits() - rand_type == an implementation of dlib/rand/rand_float_abstract.h ensures - measures the given bit in this register. Let R denote the boolean result of the measurement, where true means the bit was measured to have value 1 and false means it had a value of 0. - if (R == true) then - returns true - #probability_of_bit(bit) == 1 - else - returns false - #probability_of_bit(bit) == 0 !*/ template <typename rand_type> bool measure_and_remove_bit ( int bit, rand_type& rnd ); /*! requires - num_bits() > 1 - 0 <= bit < num_bits() - rand_type == an implementation of dlib/rand/rand_float_abstract.h ensures - measures the given bit in this register. Let R denote the boolean result of the measurement, where true means the bit was measured to have value 1 and false means it had a value of 0. - #num_bits() == num_bits() - 1 - removes the bit that was measured from this register. - if (R == true) then - returns true - else - returns false !*/ const matrix<qc_scalar_type,0,1>& state_vector( ) const; /*! ensures - returns a const reference to the state vector that describes the state of the quantum bits in this register. !*/ matrix<qc_scalar_type,0,1>& state_vector( ); /*! ensures - returns a non-const reference to the state vector that describes the state of the quantum bits in this register. !*/ void swap ( quantum_register& item ); /*! ensures - swaps *this and item !*/ }; inline void swap ( quantum_register& a, quantum_register& b ) { a.swap(b); } /*! provides a global swap function !*/ // ---------------------------------------------------------------------------------------- template <typename T> class gate_exp { /*! REQUIREMENTS ON T T must be some object that inherits from gate_exp and implements its own version of operator() and compute_state_element(). WHAT THIS OBJECT REPRESENTS This object represents an expression that evaluates to a quantum gate that operates on T::num_bits qubits. This object makes it easy to create new types of gate objects. All you need to do is inherit from gate_exp in the proper way and then you can use your new gate objects in conjunction with all the others. !*/ public: static const long num_bits = T::num_bits; static const long dims = T::dims; gate_exp( T& exp ); /*! ensures - #&ref() == &exp !*/ const qc_scalar_type operator() ( long r, long c ) const; /*! requires - 0 <= r < dims - 0 <= c < dims ensures - returns ref()(r,c) !*/ void apply_gate_to ( quantum_register& reg ) const; /*! requires - reg.num_bits() == num_bits ensures - applies this quantum gate to the given quantum register - Let M represent the matrix for this quantum gate, then #reg().state_vector() = M*reg().state_vector() !*/ template <typename exp> qc_scalar_type compute_state_element ( const matrix_exp<exp>& reg, long row_idx ) const; /*! requires - reg.nr() == dims - reg.nc() == 1 - 0 <= row_idx < dims ensures - Let M represent the matrix for this gate, then this function returns rowm(M*reg, row_idx) (i.e. returns the row_idx row of what you get when you apply this gate to the given column vector in reg) - This function works by calling ref().compute_state_element(reg,row_idx) !*/ const T& ref( ); /*! ensures - returns a reference to the subexpression contained in this object !*/ const matrix<qc_scalar_type> mat ( ) const; /*! ensures - returns a dense matrix object that contains the matrix for this gate !*/ }; // ---------------------------------------------------------------------------------------- template <typename T, typename U> class composite_gate : public gate_exp<composite_gate<T,U> > { /*! REQUIREMENTS ON T AND U Both must be gate expressions that inherit from gate_exp WHAT THIS OBJECT REPRESENTS This object represents a quantum gate that is the tensor product of two other quantum gates. As an example, suppose you have 3 registers, reg_high, reg_low, and reg_all. Also suppose that reg_all is what you get when you append reg_high and reg_low, so reg_all.state_vector() == tensor_product(reg_high.state_vector(),reg_low.state_vector()). Then applying a composite gate to reg_all would give you the same thing as applying the lhs gate to reg_high and the rhs gate to reg_low and then appending the two resulting registers. So the lhs gate of a composite_gate applies to the high order bits of a regitser and the rhs gate applies to the lower order bits. !*/ public: composite_gate ( const composite_gate& g ); /*! ensures - *this is a copy of g !*/ composite_gate( const gate_exp<T>& lhs_, const gate_exp<U>& rhs_ ): /*! ensures - #lhs == lhs_.ref() - #rhs == rhs_.ref() - #num_bits == T::num_bits + U::num_bits - #dims == 2^num_bits - #&ref() == this !*/ const qc_scalar_type operator() ( long r, long c ) const; /*! requires - 0 <= r < dims - 0 <= c < dims ensures - Let M denote the tensor product of lhs with rhs, then this function returns M(r,c) (i.e. returns lhs(r/U::dims,c/U::dims)*rhs(r%U::dims, c%U::dims)) !*/ template <typename exp> qc_scalar_type compute_state_element ( const matrix_exp<exp>& reg, long row_idx ) const; /*! requires - reg.nr() == dims - reg.nc() == 1 - 0 <= row_idx < dims ensures - Let M represent the matrix for this gate, then this function returns rowm(M*reg, row_idx) (i.e. returns the row_idx row of what you get when you apply this gate to the given column vector in reg) - This function works by calling rhs.compute_state_element() and using elements of the matrix in lhs. !*/ static const long num_bits; static const long dims; const T lhs; const U rhs; }; // ---------------------------------------------------------------------------------------- template <long bits> class gate : public gate_exp<gate<bits> > { /*! REQUIREMENTS ON bits 0 < bits <= 30 WHAT THIS OBJECT REPRESENTS This object represents a quantum gate that operates on bits qubits. It stores its gate matrix explicitly in a dense in-memory matrix. !*/ public: gate( ); /*! ensures - num_bits == bits - dims == 2^bits - #&ref() == this - for all valid r and c: #(*this)(r,c) == 0 !*/ gate ( const gate& g ); /*! ensures - *this is a copy of g !*/ template <typename T> explicit gate( const gate_exp<T>& g ); /*! requires - T::num_bits == num_bits ensures - num_bits == bits - dims == 2^bits - #&ref() == this - for all valid r and c: #(*this)(r,c) == g(r,c) !*/ const qc_scalar_type& operator() ( long r, long c ) const; /*! requires - 0 <= r < dims - 0 <= c < dims ensures - Let M denote the matrix for this gate, then this function returns a const reference to M(r,c) !*/ qc_scalar_type& operator() ( long r, long c ); /*! requires - 0 <= r < dims - 0 <= c < dims ensures - Let M denote the matrix for this gate, then this function returns a non-const reference to M(r,c) !*/ template <typename exp> qc_scalar_type compute_state_element ( const matrix_exp<exp>& reg, long row_idx ) const; /*! requires - reg.nr() == dims - reg.nc() == 1 - 0 <= row_idx < dims ensures - Let M represent the matrix for this gate, then this function returns rowm(M*reg, row_idx) (i.e. returns the row_idx row of what you get when you apply this gate to the given column vector in reg) !*/ static const long num_bits; static const long dims; }; // ---------------------------------------------------------------------------------------- template <typename T, typename U> const composite_gate<T,U> operator, ( const gate_exp<T>& lhs, const gate_exp<U>& rhs ) { return composite_gate<T,U>(lhs,rhs); } /*! ensures - returns a composite_gate that represents the tensor product of the lhs gate with the rhs gate. !*/ // ---------------------------------------------------------------------------------------- namespace quantum_gates { inline const gate<1> hadamard( ); /*! ensures - returns the Hadamard gate. (i.e. A gate with a matrix of |1, 1| 1/sqrt(2) * |1,-1| ) !*/ inline const gate<1> x( ); /*! ensures - returns the not gate. (i.e. A gate with a matrix of |0, 1| |1, 0| ) !*/ inline const gate<1> y( ); /*! ensures - returns the y gate. (i.e. A gate with a matrix of |0,-i| |i, 0| ) !*/ inline const gate<1> z( ); /*! ensures - returns the z gate. (i.e. A gate with a matrix of |1, 0| |0,-1| ) !*/ inline const gate<1> noop( ); /*! ensures - returns the no-op or identity gate. (i.e. A gate with a matrix of |1, 0| |0, 1| ) !*/ template < int control_bit, int target_bit > class cnot : public gate_exp<cnot<control_bit, target_bit> > { /*! REQUIREMENTS ON control_bit AND target_bit - control_bit != target_bit WHAT THIS OBJECT REPRESENTS This object represents the controlled-not quantum gate. It is a gate that operates on abs(control_bit-target_bit)+1 qubits. In terms of the computational basis vectors, this gate maps input vectors to output vectors in the following way: - if (the input vector corresponds to a state where the control_bit qubit is 1) then - this gate outputs the computational basis vector that corresponds to the state where the target_bit has been flipped with respect to the input vector - else - this gate outputs the input vector unmodified !*/ }; template < int control_bit1, int control_bit2, int target_bit > class toffoli : public gate_exp<toffoli<control_bit1, control_bit2, target_bit> > { /*! REQUIREMENTS ON control_bit1, control_bit2, AND target_bit - all the arguments denote different bits, i.e.: - control_bit1 != target_bit - control_bit2 != target_bit - control_bit1 != control_bit2 - The target bit can't be in-between the control bits, i.e.: - (control_bit1 < target_bit && control_bit2 < target_bit) || (control_bit1 > target_bit && control_bit2 > target_bit) WHAT THIS OBJECT REPRESENTS This object represents the toffoli variant of a controlled-not quantum gate. It is a gate that operates on max(abs(control_bit2-target_bit),abs(control_bit1-target_bit))+1 qubits. In terms of the computational basis vectors, this gate maps input vectors to output vectors in the following way: - if (the input vector corresponds to a state where the control_bit1 and control_bit2 qubits are 1) then - this gate outputs the computational basis vector that corresponds to the state where the target_bit has been flipped with respect to the input vector - else - this gate outputs the input vector unmodified !*/ }; // ------------------------------------------------------------------------------------ } // ---------------------------------------------------------------------------------------- } #endif // DLIB_QUANTUM_COMPUTINg_ABSTRACT_