// Copyright (C) 2007 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_SOLVE_QP2_USING_SMo_Hh_ #define DLIB_SOLVE_QP2_USING_SMo_Hh_ #include "optimization_solve_qp2_using_smo_abstract.h" #include <cmath> #include <limits> #include <sstream> #include "../matrix.h" #include "../algs.h" namespace dlib { // ---------------------------------------------------------------------------------------- class invalid_nu_error : public dlib::error { public: invalid_nu_error(const std::string& msg, double nu_) : dlib::error(msg), nu(nu_) {}; const double nu; }; // ---------------------------------------------------------------------------------------- template < typename T > typename T::type maximum_nu_impl ( const T& y ) { typedef typename T::type scalar_type; // make sure requires clause is not broken DLIB_ASSERT(y.size() > 1 && is_col_vector(y), "\ttypedef T::type maximum_nu(y)" << "\n\ty should be a column vector with more than one entry" << "\n\ty.nr(): " << y.nr() << "\n\ty.nc(): " << y.nc() ); long pos_count = 0; long neg_count = 0; for (long r = 0; r < y.nr(); ++r) { if (y(r) == 1.0) { ++pos_count; } else if (y(r) == -1.0) { ++neg_count; } else { // make sure requires clause is not broken DLIB_ASSERT(y(r) == -1.0 || y(r) == 1.0, "\ttypedef T::type maximum_nu(y)" << "\n\ty should contain only 1 and 0 entries" << "\n\tr: " << r << "\n\ty(r): " << y(r) ); } } return static_cast<scalar_type>(2.0*(scalar_type)std::min(pos_count,neg_count)/(scalar_type)y.nr()); } template < typename T > typename T::type maximum_nu ( const T& y ) { return maximum_nu_impl(mat(y)); } template < typename T > typename T::value_type maximum_nu ( const T& y ) { return maximum_nu_impl(mat(y)); } // ---------------------------------------------------------------------------------------- template < typename matrix_type > class solve_qp2_using_smo { public: typedef typename matrix_type::mem_manager_type mem_manager_type; typedef typename matrix_type::type scalar_type; typedef typename matrix_type::layout_type layout_type; typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix; typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix; template < typename EXP1, typename EXP2, long NR > unsigned long operator() ( const matrix_exp<EXP1>& Q, const matrix_exp<EXP2>& y, const scalar_type nu, matrix<scalar_type,NR,1,mem_manager_type, layout_type>& alpha, scalar_type eps ) { DLIB_ASSERT(Q.nr() == Q.nc() && y.size() == Q.nr() && y.size() > 1 && is_col_vector(y) && sum((y == +1) + (y == -1)) == y.size() && 0 < nu && nu <= 1 && eps > 0, "\t void solve_qp2_using_smo::operator()" << "\n\t invalid arguments were given to this function" << "\n\t Q.nr(): " << Q.nr() << "\n\t Q.nc(): " << Q.nc() << "\n\t is_col_vector(y): " << is_col_vector(y) << "\n\t y.size(): " << y.size() << "\n\t sum((y == +1) + (y == -1)): " << sum((y == +1) + (y == -1)) << "\n\t nu: " << nu << "\n\t eps: " << eps ); alpha.set_size(Q.nr(),1); df.set_size(Q.nr()); // now initialize alpha set_initial_alpha(y, nu, alpha); const scalar_type tau = 1e-12; typedef typename colm_exp<EXP1>::type col_type; set_all_elements(df, 0); // initialize df. Compute df = Q*alpha for (long r = 0; r < df.nr(); ++r) { if (alpha(r) != 0) { df += alpha(r)*matrix_cast<scalar_type>(colm(Q,r)); } } unsigned long count = 0; // now perform the actual optimization of alpha long i=0, j=0; while (find_working_group(y,alpha,Q,df,tau,eps,i,j)) { ++count; const scalar_type old_alpha_i = alpha(i); const scalar_type old_alpha_j = alpha(j); optimize_working_pair(alpha,Q,df,tau,i,j); // update the df vector now that we have modified alpha(i) and alpha(j) scalar_type delta_alpha_i = alpha(i) - old_alpha_i; scalar_type delta_alpha_j = alpha(j) - old_alpha_j; col_type Q_i = colm(Q,i); col_type Q_j = colm(Q,j); for(long k = 0; k < df.nr(); ++k) df(k) += Q_i(k)*delta_alpha_i + Q_j(k)*delta_alpha_j; } return count; } const column_matrix& get_gradient ( ) const { return df; } private: // ------------------------------------------------------------------------------------- template < typename scalar_type, typename scalar_vector_type, typename scalar_vector_type2 > inline void set_initial_alpha ( const scalar_vector_type& y, const scalar_type nu, scalar_vector_type2& alpha ) const { set_all_elements(alpha,0); const scalar_type l = y.nr(); scalar_type temp = nu*l/2; long num = (long)std::floor(temp); long num_total = (long)std::ceil(temp); bool has_slack = false; int count = 0; for (int i = 0; i < alpha.nr(); ++i) { if (y(i) == 1) { if (count < num) { ++count; alpha(i) = 1; } else { has_slack = true; if (num_total > num) { ++count; alpha(i) = temp - std::floor(temp); } break; } } } if (count != num_total || has_slack == false) { std::ostringstream sout; sout << "Invalid nu of " << nu << ". It is required that: 0 < nu < " << 2*(scalar_type)count/y.nr(); throw invalid_nu_error(sout.str(),nu); } has_slack = false; count = 0; for (int i = 0; i < alpha.nr(); ++i) { if (y(i) == -1) { if (count < num) { ++count; alpha(i) = 1; } else { has_slack = true; if (num_total > num) { ++count; alpha(i) = temp - std::floor(temp); } break; } } } if (count != num_total || has_slack == false) { std::ostringstream sout; sout << "Invalid nu of " << nu << ". It is required that: 0 < nu < " << 2*(scalar_type)count/y.nr(); throw invalid_nu_error(sout.str(),nu); } } // ------------------------------------------------------------------------------------ template < typename scalar_vector_type, typename scalar_type, typename EXP, typename U, typename V > inline bool find_working_group ( const V& y, const U& alpha, const matrix_exp<EXP>& Q, const scalar_vector_type& df, const scalar_type tau, const scalar_type eps, long& i_out, long& j_out ) const { using namespace std; long ip = 0; long jp = 0; long in = 0; long jn = 0; typedef typename colm_exp<EXP>::type col_type; typedef typename diag_exp<EXP>::type diag_type; scalar_type ip_val = -numeric_limits<scalar_type>::infinity(); scalar_type jp_val = numeric_limits<scalar_type>::infinity(); scalar_type in_val = -numeric_limits<scalar_type>::infinity(); scalar_type jn_val = numeric_limits<scalar_type>::infinity(); // loop over the alphas and find the maximum ip and in indices. for (long i = 0; i < alpha.nr(); ++i) { if (y(i) == 1) { if (alpha(i) < 1.0) { if (-df(i) > ip_val) { ip_val = -df(i); ip = i; } } } else { if (alpha(i) > 0.0) { if (df(i) > in_val) { in_val = df(i); in = i; } } } } scalar_type Mp = numeric_limits<scalar_type>::infinity(); scalar_type Mn = numeric_limits<scalar_type>::infinity(); // Pick out the columns and diagonal of Q we need below. Doing // it this way is faster if Q is actually a symmetric_matrix_cache // object. col_type Q_ip = colm(Q,ip); col_type Q_in = colm(Q,in); diag_type Q_diag = diag(Q); // now we need to find the minimum jp and jn indices for (long j = 0; j < alpha.nr(); ++j) { if (y(j) == 1) { if (alpha(j) > 0.0) { scalar_type b = ip_val + df(j); if (-df(j) < Mp) Mp = -df(j); if (b > 0) { scalar_type a = Q_ip(ip) + Q_diag(j) - 2*Q_ip(j); if (a <= 0) a = tau; scalar_type temp = -b*b/a; if (temp < jp_val) { jp_val = temp; jp = j; } } } } else { if (alpha(j) < 1.0) { scalar_type b = in_val - df(j); if (df(j) < Mn) Mn = df(j); if (b > 0) { scalar_type a = Q_in(in) + Q_diag(j) - 2*Q_in(j); if (a <= 0) a = tau; scalar_type temp = -b*b/a; if (temp < jn_val) { jn_val = temp; jn = j; } } } } } // if we are at the optimal point then return false so the caller knows // to stop optimizing if (std::max(ip_val - Mp, in_val - Mn) < eps) return false; if (jp_val < jn_val) { i_out = ip; j_out = jp; } else { i_out = in; j_out = jn; } return true; } // ------------------------------------------------------------------------------------ template < typename EXP, typename T, typename U > inline void optimize_working_pair ( T& alpha, const matrix_exp<EXP>& Q, const U& df, const scalar_type tau, const long i, const long j ) const { scalar_type quad_coef = Q(i,i)+Q(j,j)-2*Q(j,i); if (quad_coef <= 0) quad_coef = tau; scalar_type delta = (df(i)-df(j))/quad_coef; scalar_type sum = alpha(i) + alpha(j); alpha(i) -= delta; alpha(j) += delta; if(sum > 1) { if(alpha(i) > 1) { alpha(i) = 1; alpha(j) = sum - 1; } else if(alpha(j) > 1) { alpha(j) = 1; alpha(i) = sum - 1; } } else { if(alpha(j) < 0) { alpha(j) = 0; alpha(i) = sum; } else if(alpha(i) < 0) { alpha(i) = 0; alpha(j) = sum; } } } // ------------------------------------------------------------------------------------ column_matrix df; // gradient of f(alpha) }; // ---------------------------------------------------------------------------------------- } #endif // DLIB_SOLVE_QP2_USING_SMo_Hh_