// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_FFt_ABSTRACT_Hh_
#ifdef DLIB_FFt_ABSTRACT_Hh_

#include "matrix_abstract.h"
#include "../algs.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    bool is_power_of_two (
        const unsigned long& value
    );
    /*!
        ensures
            - returns true if value contains a power of two and false otherwise.  As a
              special case, we also consider 0 to be a power of two.
    !*/

// ----------------------------------------------------------------------------------------

    template <typename EXP>
    typename EXP::matrix_type fft (
        const matrix_exp<EXP>& data
    );  
    /*!
        requires
            - data contains elements of type std::complex<>
            - is_power_of_two(data.nr()) == true
            - is_power_of_two(data.nc()) == true
        ensures
            - Computes the 1 or 2 dimensional discrete Fourier transform of the given data
              matrix and returns it.  In particular, we return a matrix D such that:
                - D.nr() == data.nr()
                - D.nc() == data.nc()
                - D(0,0) == the DC term of the Fourier transform.
                - starting with D(0,0), D contains progressively higher frequency components
                  of the input data.
                - ifft(D) == D
    !*/

// ----------------------------------------------------------------------------------------

    template <typename EXP>
    typename EXP::matrix_type ifft (
        const matrix_exp<EXP>& data
    );  
    /*!
        requires
            - data contains elements of type std::complex<>
            - is_power_of_two(data.nr()) == true
            - is_power_of_two(data.nc()) == true
        ensures
            - Computes the 1 or 2 dimensional inverse discrete Fourier transform of the
              given data vector and returns it.  In particular, we return a matrix D such
              that:
                - D.nr() == data.nr()
                - D.nc() == data.nc()
                - fft(D) == data 
    !*/

// ----------------------------------------------------------------------------------------

    template < 
        typename T, 
        long NR,
        long NC,
        typename MM,
        typename L 
        >
    void fft_inplace (
        matrix<std::complex<T>,NR,NC,MM,L>& data
    );
    /*!
        requires
            - data contains elements of type std::complex<>
            - is_power_of_two(data.nr()) == true
            - is_power_of_two(data.nc()) == true
        ensures
            - This function is identical to fft() except that it does the FFT in-place.
              That is, after this function executes we will have:
                - #data == fft(data)
    !*/

// ----------------------------------------------------------------------------------------

    template < 
        typename T, 
        long NR,
        long NC,
        typename MM,
        typename L 
        >
    void ifft_inplace (
        matrix<std::complex<T>,NR,NC,MM,L>& data
    );
    /*!
        requires
            - data contains elements of type std::complex<>
            - is_power_of_two(data.nr()) == true
            - is_power_of_two(data.nc()) == true
        ensures
            - This function is identical to ifft() except that it does the inverse FFT
              in-place.  That is, after this function executes we will have:
                - #data == ifft(data)*data.size()
                - Note that the output needs to be divided by data.size() to complete the 
                  inverse transformation.  
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_FFt_ABSTRACT_Hh_