// Copyright (C) 2013 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_FFt_ABSTRACT_Hh_ #ifdef DLIB_FFt_ABSTRACT_Hh_ #include "matrix_abstract.h" #include "../algs.h" namespace dlib { // ---------------------------------------------------------------------------------------- bool is_power_of_two ( const unsigned long& value ); /*! ensures - returns true if value contains a power of two and false otherwise. As a special case, we also consider 0 to be a power of two. !*/ // ---------------------------------------------------------------------------------------- template <typename EXP> typename EXP::matrix_type fft ( const matrix_exp<EXP>& data ); /*! requires - data contains elements of type std::complex<> - is_power_of_two(data.nr()) == true - is_power_of_two(data.nc()) == true ensures - Computes the 1 or 2 dimensional discrete Fourier transform of the given data matrix and returns it. In particular, we return a matrix D such that: - D.nr() == data.nr() - D.nc() == data.nc() - D(0,0) == the DC term of the Fourier transform. - starting with D(0,0), D contains progressively higher frequency components of the input data. - ifft(D) == D !*/ // ---------------------------------------------------------------------------------------- template <typename EXP> typename EXP::matrix_type ifft ( const matrix_exp<EXP>& data ); /*! requires - data contains elements of type std::complex<> - is_power_of_two(data.nr()) == true - is_power_of_two(data.nc()) == true ensures - Computes the 1 or 2 dimensional inverse discrete Fourier transform of the given data vector and returns it. In particular, we return a matrix D such that: - D.nr() == data.nr() - D.nc() == data.nc() - fft(D) == data !*/ // ---------------------------------------------------------------------------------------- template < typename T, long NR, long NC, typename MM, typename L > void fft_inplace ( matrix<std::complex<T>,NR,NC,MM,L>& data ); /*! requires - data contains elements of type std::complex<> - is_power_of_two(data.nr()) == true - is_power_of_two(data.nc()) == true ensures - This function is identical to fft() except that it does the FFT in-place. That is, after this function executes we will have: - #data == fft(data) !*/ // ---------------------------------------------------------------------------------------- template < typename T, long NR, long NC, typename MM, typename L > void ifft_inplace ( matrix<std::complex<T>,NR,NC,MM,L>& data ); /*! requires - data contains elements of type std::complex<> - is_power_of_two(data.nr()) == true - is_power_of_two(data.nc()) == true ensures - This function is identical to ifft() except that it does the inverse FFT in-place. That is, after this function executes we will have: - #data == ifft(data)*data.size() - Note that the output needs to be divided by data.size() to complete the inverse transformation. !*/ // ---------------------------------------------------------------------------------------- } #endif // DLIB_FFt_ABSTRACT_Hh_