// Copyright (C) 2010 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_LAPACk_GEQRF_Hh_ #define DLIB_LAPACk_GEQRF_Hh_ #include "fortran_id.h" #include "../matrix.h" namespace dlib { namespace lapack { namespace binding { extern "C" { void DLIB_FORTRAN_ID(dgeqrf) (integer *m, integer *n, double *a, integer * lda, double *tau, double *work, integer *lwork, integer *info); void DLIB_FORTRAN_ID(sgeqrf) (integer *m, integer *n, float *a, integer * lda, float *tau, float *work, integer *lwork, integer *info); } inline int geqrf (integer m, integer n, double *a, integer lda, double *tau, double *work, integer lwork) { integer info = 0; DLIB_FORTRAN_ID(dgeqrf)(&m, &n, a, &lda, tau, work, &lwork, &info); return info; } inline int geqrf (integer m, integer n, float *a, integer lda, float *tau, float *work, integer lwork) { integer info = 0; DLIB_FORTRAN_ID(sgeqrf)(&m, &n, a, &lda, tau, work, &lwork, &info); return info; } } // ------------------------------------------------------------------------------------ /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGEQRF computes a QR factorization of a real M-by-N matrix A: */ /* A = Q * R. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the min(M,N)-by-N upper trapezoidal matrix R (R is */ /* upper triangular if m >= n); the elements below the diagonal, */ /* with the array TAU, represent the orthogonal matrix Q as a */ /* product of min(m,n) elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N). */ /* For optimum performance LWORK >= N*NB, where NB is */ /* the optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real scalar, and v is a real vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */ /* and tau in TAU(i). */ // ------------------------------------------------------------------------------------ template < typename T, long NR1, long NR2, long NC1, long NC2, typename MM > int geqrf ( matrix<T,NR1,NC1,MM,column_major_layout>& a, matrix<T,NR2,NC2,MM,column_major_layout>& tau ) { matrix<T,0,1,MM,column_major_layout> work; tau.set_size(std::min(a.nr(), a.nc()), 1); // figure out how big the workspace needs to be. T work_size = 1; int info = binding::geqrf(a.nr(), a.nc(), &a(0,0), a.nr(), &tau(0,0), &work_size, -1); if (info != 0) return info; if (work.size() < work_size) work.set_size(static_cast<long>(work_size), 1); // compute the actual decomposition info = binding::geqrf(a.nr(), a.nc(), &a(0,0), a.nr(), &tau(0,0), &work(0,0), work.size()); return info; } // ------------------------------------------------------------------------------------ } } // ---------------------------------------------------------------------------------------- #endif // DLIB_LAPACk_GEQRF_Hh_