// Copyright (C) 2007 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_GRAPH_UTILs_ #define DLIB_GRAPH_UTILs_ #include "../algs.h" #include <vector> #include "graph_utils_abstract.h" #include "../is_kind.h" #include "../enable_if.h" #include <algorithm> #include "../set.h" #include "../memory_manager.h" #include "../set_utils.h" namespace dlib { // ---------------------------------------------------------------------------------------- template <typename T> typename enable_if<is_graph<T>,typename T::edge_type>::type& edge( T& g, unsigned long idx_i, unsigned long idx_j ) { // make sure requires clause is not broken DLIB_ASSERT(g.has_edge(idx_i,idx_j) == true, "\tT::edge_type& edge(g, idx_i, idx_j)" << "\n\t you have requested an invalid edge" << "\n\t idx_i: " << idx_i << "\n\t idx_j: " << idx_j ); for (unsigned long i = 0; i < g.node(idx_i).number_of_neighbors(); ++i) { if (g.node(idx_i).neighbor(i).index() == idx_j) return g.node(idx_i).edge(i); } // put this here just so compilers don't complain about a lack of // a return here DLIB_CASSERT(false, "\tT::edge_type& edge(g, idx_i, idx_j)" << "\n\t you have requested an invalid edge" << "\n\t idx_i: " << idx_i << "\n\t idx_j: " << idx_j ); } template <typename T> const typename enable_if<is_graph<T>,typename T::edge_type>::type& edge( const T& g, unsigned long idx_i, unsigned long idx_j ) { // make sure requires clause is not broken DLIB_ASSERT(g.has_edge(idx_i,idx_j) == true, "\tT::edge_type& edge(g, idx_i, idx_j)" << "\n\t you have requested an invalid edge" << "\n\t idx_i: " << idx_i << "\n\t idx_j: " << idx_j ); for (unsigned long i = 0; i < g.node(idx_i).number_of_neighbors(); ++i) { if (g.node(idx_i).neighbor(i).index() == idx_j) return g.node(idx_i).edge(i); } // put this here just so compilers don't complain about a lack of // a return here DLIB_CASSERT(false, "\tT::edge_type& edge(g, idx_i, idx_j)" << "\n\t you have requested an invalid edge" << "\n\t idx_i: " << idx_i << "\n\t idx_j: " << idx_j ); } // ---------------------------------------------------------------------------------------- template <typename T> typename enable_if<is_directed_graph<T>,typename T::edge_type>::type& edge( T& g, unsigned long parent_idx, unsigned long child_idx ) { // make sure requires clause is not broken DLIB_ASSERT(g.has_edge(parent_idx,child_idx) == true, "\t T::edge_type& edge(g, parent_idx, child_idx)" << "\n\t you have requested an invalid edge" << "\n\t parent_idx: " << parent_idx << "\n\t child_idx: " << child_idx ); for (unsigned long i = 0; i < g.node(parent_idx).number_of_children(); ++i) { if (g.node(parent_idx).child(i).index() == child_idx) return g.node(parent_idx).child_edge(i); } // put this here just so compilers don't complain about a lack of // a return here DLIB_CASSERT(false, "\t T::edge_type& edge(g, parent_idx, child_idx)" << "\n\t you have requested an invalid edge" << "\n\t parent_idx: " << parent_idx << "\n\t child_idx: " << child_idx ); } template <typename T> const typename enable_if<is_directed_graph<T>,typename T::edge_type>::type& edge( const T& g, unsigned long parent_idx, unsigned long child_idx ) { // make sure requires clause is not broken DLIB_ASSERT(g.has_edge(parent_idx,child_idx) == true, "\t T::edge_type& edge(g, parent_idx, child_idx)" << "\n\t you have requested an invalid edge" << "\n\t parent_idx: " << parent_idx << "\n\t child_idx: " << child_idx ); for (unsigned long i = 0; i < g.node(parent_idx).number_of_children(); ++i) { if (g.node(parent_idx).child(i).index() == child_idx) return g.node(parent_idx).child_edge(i); } // put this here just so compilers don't complain about a lack of // a return here DLIB_ASSERT(false, "\t T::edge_type& edge(g, parent_idx, child_idx)" << "\n\t you have requested an invalid edge" << "\n\t parent_idx: " << parent_idx << "\n\t child_idx: " << child_idx ); } // ---------------------------------------------------------------------------------------- namespace graph_helpers { template <typename T, typename U> inline bool is_same_object ( const T& a, const U& b ) { if (is_same_type<const T,const U>::value == false) return false; if ((void*)&a == (void*)&b) return true; else return false; } template < typename T > bool search_for_directed_cycles ( const T& node, std::vector<bool>& visited, std::vector<bool>& temp ) /*! requires - visited.size() >= number of nodes in the graph that contains the given node - temp.size() >= number of nodes in the graph that contains the given node - for all i in temp: - temp[i] == false ensures - checks the connected subgraph containing the given node for directed cycles and returns true if any are found and false otherwise. - for all nodes N in the connected subgraph containing the given node: - #visited[N.index()] == true - for all i in temp: - #temp[i] == false !*/ { if (temp[node.index()] == true) return true; visited[node.index()] = true; temp[node.index()] = true; for (unsigned long i = 0; i < node.number_of_children(); ++i) { if (search_for_directed_cycles(node.child(i), visited, temp)) return true; } temp[node.index()] = false; return false; } // ------------------------------------------------------------------------------------ template < typename T > typename enable_if<is_directed_graph<typename T::graph_type>,bool>::type search_for_undirected_cycles ( const T& node, std::vector<bool>& visited, unsigned long prev = std::numeric_limits<unsigned long>::max() ) /*! requires - visited.size() >= number of nodes in the graph that contains the given node - for all nodes N in the connected subgraph containing the given node: - visited[N.index] == false ensures - checks the connected subgraph containing the given node for directed cycles and returns true if any are found and false otherwise. - for all nodes N in the connected subgraph containing the given node: - #visited[N.index()] == true !*/ { using namespace std; if (visited[node.index()] == true) return true; visited[node.index()] = true; for (unsigned long i = 0; i < node.number_of_children(); ++i) { if (node.child(i).index() != prev && search_for_undirected_cycles(node.child(i), visited, node.index())) return true; } for (unsigned long i = 0; i < node.number_of_parents(); ++i) { if (node.parent(i).index() != prev && search_for_undirected_cycles(node.parent(i), visited, node.index())) return true; } return false; } // ------------------------------------------------------------------------------------ template < typename T > typename enable_if<is_graph<typename T::graph_type>,bool>::type search_for_undirected_cycles ( const T& node, std::vector<bool>& visited, unsigned long prev = std::numeric_limits<unsigned long>::max() ) /*! requires - visited.size() >= number of nodes in the graph that contains the given node - for all nodes N in the connected subgraph containing the given node: - visited[N.index] == false ensures - checks the connected subgraph containing the given node for directed cycles and returns true if any are found and false otherwise. - for all nodes N in the connected subgraph containing the given node: - #visited[N.index()] == true !*/ { using namespace std; if (visited[node.index()] == true) return true; visited[node.index()] = true; for (unsigned long i = 0; i < node.number_of_neighbors(); ++i) { if (node.neighbor(i).index() != prev && search_for_undirected_cycles(node.neighbor(i), visited, node.index())) return true; } return false; } } // ------------------------------------------------------------------------------------ template < typename graph_type1, typename graph_type2 > typename enable_if<is_graph<graph_type1> >::type copy_graph_structure ( const graph_type1& src, graph_type2& dest ) { COMPILE_TIME_ASSERT(is_graph<graph_type1>::value); COMPILE_TIME_ASSERT(is_graph<graph_type2>::value); if (graph_helpers::is_same_object(src,dest)) return; dest.clear(); dest.set_number_of_nodes(src.number_of_nodes()); // copy all the edges from src into dest for (unsigned long i = 0; i < src.number_of_nodes(); ++i) { for (unsigned long j = 0; j < src.node(i).number_of_neighbors(); ++j) { const unsigned long nidx = src.node(i).neighbor(j).index(); if (nidx >= i) { dest.add_edge(i,nidx); } } } } template < typename graph_type1, typename graph_type2 > typename enable_if<is_directed_graph<graph_type1> >::type copy_graph_structure ( const graph_type1& src, graph_type2& dest ) { COMPILE_TIME_ASSERT(is_directed_graph<graph_type1>::value); COMPILE_TIME_ASSERT(is_directed_graph<graph_type2>::value || is_graph<graph_type2>::value ); if (graph_helpers::is_same_object(src,dest)) return; dest.clear(); dest.set_number_of_nodes(src.number_of_nodes()); // copy all the edges from src into dest for (unsigned long i = 0; i < src.number_of_nodes(); ++i) { for (unsigned long j = 0; j < src.node(i).number_of_children(); ++j) { const unsigned long nidx = src.node(i).child(j).index(); if (dest.has_edge(i,nidx) == false) { dest.add_edge(i,nidx); } } } } // ---------------------------------------------------------------------------------------- template < typename graph_type1, typename graph_type2 > typename enable_if<is_graph<graph_type1> >::type copy_graph ( const graph_type1& src, graph_type2& dest ) { COMPILE_TIME_ASSERT(is_graph<graph_type1>::value); COMPILE_TIME_ASSERT(is_graph<graph_type2>::value); if (graph_helpers::is_same_object(src,dest)) return; copy_graph_structure(src,dest); // copy all the node and edge content for (unsigned long i = 0; i < src.number_of_nodes(); ++i) { dest.node(i).data = src.node(i).data; for (unsigned long j = 0; j < src.node(i).number_of_neighbors(); ++j) { const unsigned long nidx = src.node(i).neighbor(j).index(); if (nidx >= i) { dest.node(i).edge(j) = src.node(i).edge(j); } } } } template < typename graph_type1, typename graph_type2 > typename enable_if<is_directed_graph<graph_type1> >::type copy_graph ( const graph_type1& src, graph_type2& dest ) { COMPILE_TIME_ASSERT(is_directed_graph<graph_type1>::value); COMPILE_TIME_ASSERT(is_directed_graph<graph_type2>::value); if (graph_helpers::is_same_object(src,dest)) return; copy_graph_structure(src,dest); // copy all the node and edge content for (unsigned long i = 0; i < src.number_of_nodes(); ++i) { dest.node(i).data = src.node(i).data; for (unsigned long j = 0; j < src.node(i).number_of_children(); ++j) { dest.node(i).child_edge(j) = src.node(i).child_edge(j); } } } // ---------------------------------------------------------------------------------------- template < typename T, typename S > typename enable_if<is_graph<typename T::graph_type> >::type find_connected_nodes ( const T& n, S& visited ) { if (visited.is_member(n.index()) == false) { unsigned long temp = n.index(); visited.add(temp); for (unsigned long i = 0; i < n.number_of_neighbors(); ++i) find_connected_nodes(n.neighbor(i), visited); } } template < typename T, typename S > typename enable_if<is_directed_graph<typename T::graph_type> >::type find_connected_nodes ( const T& n, S& visited ) { if (visited.is_member(n.index()) == false) { unsigned long temp = n.index(); visited.add(temp); for (unsigned long i = 0; i < n.number_of_parents(); ++i) find_connected_nodes(n.parent(i), visited); for (unsigned long i = 0; i < n.number_of_children(); ++i) find_connected_nodes(n.child(i), visited); } } // ---------------------------------------------------------------------------------------- template < typename T > bool graph_is_connected ( const T& g ) { if (g.number_of_nodes() == 0) return true; set<unsigned long>::kernel_1b_c visited; find_connected_nodes(g.node(0), visited); return (visited.size() == g.number_of_nodes()); } // ---------------------------------------------------------------------------------------- template < typename T > bool graph_has_symmetric_edges ( const T& graph ) { for (unsigned long i = 0; i < graph.number_of_nodes(); ++i) { for (unsigned long j = 0; j < graph.node(i).number_of_children(); ++j) { const unsigned long jj = graph.node(i).child(j).index(); // make sure every edge from a parent to a child has an edge linking back if (graph.has_edge(jj,i) == false) return false; } for (unsigned long j = 0; j < graph.node(i).number_of_parents(); ++j) { const unsigned long jj = graph.node(i).parent(j).index(); // make sure every edge from a child to a parent has an edge linking back if (graph.has_edge(i,jj) == false) return false; } } return true; } // ---------------------------------------------------------------------------------------- template < typename T > bool graph_contains_directed_cycle ( const T& graph ) { using namespace std; using namespace graph_helpers; std::vector<bool> visited(graph.number_of_nodes(), false); std::vector<bool> temp(graph.number_of_nodes(), false); while (true) { // find the first node that hasn't been visited yet unsigned long i; for (i = 0; i < visited.size(); ++i) { if (visited[i] == false) break; } // if we didn't find any non-visited nodes then we are done if (i == visited.size()) return false; if (search_for_directed_cycles(graph.node(i), visited, temp)) return true; } } // ---------------------------------------------------------------------------------------- template < typename T > bool graph_contains_undirected_cycle ( const T& graph ) { using namespace std; using namespace graph_helpers; std::vector<bool> visited(graph.number_of_nodes(), false); while (true) { // find the first node that hasn't been visited yet unsigned long i; for (i = 0; i < visited.size(); ++i) { if (visited[i] == false) break; } // if we didn't find any non-visited nodes then we are done if (i == visited.size()) return false; if (search_for_undirected_cycles(graph.node(i), visited)) return true; } } // ---------------------------------------------------------------------------------------- template < typename directed_graph_type, typename graph_type > void create_moral_graph ( const directed_graph_type& g, graph_type& moral_graph ) { // make sure requires clause is not broken DLIB_ASSERT(graph_contains_directed_cycle(g) == false, "\tvoid create_moral_graph(g, moral_graph)" << "\n\tYou can only make moral graphs if g doesn't have directed cycles" ); COMPILE_TIME_ASSERT(is_graph<graph_type>::value); COMPILE_TIME_ASSERT(is_directed_graph<directed_graph_type>::value); copy_graph_structure(g, moral_graph); // now marry all the parents (i.e. add edges between parent nodes) for (unsigned long i = 0; i < g.number_of_nodes(); ++i) { // loop over all combinations of parents of g.node(i) for (unsigned long j = 0; j < g.node(i).number_of_parents(); ++j) { for (unsigned long k = 0; k < g.node(i).number_of_parents(); ++k) { const unsigned long p1 = g.node(i).parent(j).index(); const unsigned long p2 = g.node(i).parent(k).index(); if (p1 == p2) continue; if (moral_graph.has_edge(p1,p2) == false) moral_graph.add_edge(p1,p2); } } } } // ---------------------------------------------------------------------------------------- template < typename graph_type, typename sets_of_int > bool is_clique ( const graph_type& g, const sets_of_int& clique ) { // make sure requires clause is not broken DLIB_ASSERT(graph_contains_length_one_cycle(g) == false, "\tvoid is_clique(g, clique)" << "\n\tinvalid graph" ); #ifdef ENABLE_ASSERTS clique.reset(); while (clique.move_next()) { const unsigned long x = clique.element(); DLIB_ASSERT( x < g.number_of_nodes(), "\tvoid is_clique(g, clique)" << "\n\tthe clique set contained an invalid node index" << "\n\tx: " << x << "\n\tg.number_of_nodes(): " << g.number_of_nodes() ); } #endif COMPILE_TIME_ASSERT(is_graph<graph_type>::value); std::vector<unsigned long> v; v.reserve(clique.size()); clique.reset(); while (clique.move_next()) { v.push_back(clique.element()); } for (unsigned long i = 0; i < v.size(); ++i) { for (unsigned long j = 0; j < v.size(); ++j) { if (v[i] == v[j]) continue; if (g.has_edge(v[i], v[j]) == false) return false; } } return true; } // ---------------------------------------------------------------------------------------- template < typename graph_type, typename sets_of_int > bool is_maximal_clique ( const graph_type& g, const sets_of_int& clique ) { // make sure requires clause is not broken DLIB_ASSERT(graph_contains_length_one_cycle(g) == false, "\tvoid is_maximal_clique(g, clique)" << "\n\tinvalid graph" ); DLIB_ASSERT(is_clique(g,clique) == true, "\tvoid is_maximal_clique(g, clique)" << "\n\tinvalid graph" ); #ifdef ENABLE_ASSERTS clique.reset(); while (clique.move_next()) { const unsigned long x = clique.element(); DLIB_ASSERT( x < g.number_of_nodes(), "\tvoid is_maximal_clique(g, clique)" << "\n\tthe clique set contained an invalid node index" << "\n\tx: " << x << "\n\tg.number_of_nodes(): " << g.number_of_nodes() ); } #endif COMPILE_TIME_ASSERT(is_graph<graph_type>::value); if (clique.size() == 0) return true; // get an element in the clique and make sure that // none of its neighbors that aren't in the clique are connected // to all the elements of the clique. clique.reset(); clique.move_next(); const unsigned long idx = clique.element(); for (unsigned long i = 0; i < g.node(idx).number_of_neighbors(); ++i) { const unsigned long n = g.node(idx).neighbor(i).index(); if (clique.is_member(n)) continue; // now loop over all the clique members and make sure they don't all // share an edge with node n bool all_share_edge = true; clique.reset(); while (clique.move_next()) { if (g.has_edge(clique.element(), n) == false) { all_share_edge = false; break; } } if (all_share_edge == true) return false; } return true; } // ---------------------------------------------------------------------------------------- template < typename T > typename enable_if<is_directed_graph<T>,bool>::type graph_contains_length_one_cycle ( const T& graph ) { for (unsigned long i = 0; i < graph.number_of_nodes(); ++i) { // make sure none of this guys children are actually itself for (unsigned long n = 0; n < graph.node(i).number_of_children(); ++n) { if (graph.node(i).child(n).index() == i) return true; } } return false; } // ---------------------------------------------------------------------------------------- template < typename T > typename enable_if<is_graph<T>,bool>::type graph_contains_length_one_cycle ( const T& graph ) { for (unsigned long i = 0; i < graph.number_of_nodes(); ++i) { // make sure none of this guys neighbors are actually itself for (unsigned long n = 0; n < graph.node(i).number_of_neighbors(); ++n) { if (graph.node(i).neighbor(n).index() == i) return true; } } return false; } // ---------------------------------------------------------------------------------------- namespace graph_helpers { struct pair { unsigned long index; unsigned long num_neighbors; bool operator< (const pair& p) const { return num_neighbors < p.num_neighbors; } }; template < typename T, typename S, typename V > void search_graph_for_triangulate ( const T& n, S& visited, V& order_visited ) { // base case of recursion. stop when we hit a node we have // already visited. if (visited.is_member(n.index())) return; // record that we have visited this node order_visited.push_back(n.index()); unsigned long temp = n.index(); visited.add(temp); // we want to visit all the neighbors of this node but do // so by visiting the nodes with the most neighbors first. So // lets make a vector that lists the nodes in the order we // want to visit them std::vector<pair> neighbors; for (unsigned long i = 0; i < n.number_of_neighbors(); ++i) { pair p; p.index = i; p.num_neighbors = n.neighbor(i).number_of_neighbors(); neighbors.push_back(p); } // now sort the neighbors array so that the neighbors with the // most neighbors come first. std::sort(neighbors.rbegin(), neighbors.rend()); // now visit all the nodes for (unsigned long i = 0; i < neighbors.size(); ++i) { search_graph_for_triangulate(n.neighbor(neighbors[i].index), visited, order_visited); } } } // end namespace graph_helpers template < typename graph_type, typename set_of_sets_of_int > void triangulate_graph_and_find_cliques ( graph_type& g, set_of_sets_of_int& cliques ) { // make sure requires clause is not broken DLIB_ASSERT(graph_contains_length_one_cycle(g) == false, "\tvoid triangulate_graph_and_find_cliques(g, cliques)" << "\n\tInvalid graph" ); DLIB_ASSERT(graph_is_connected(g) == true, "\tvoid triangulate_graph_and_find_cliques(g, cliques)" << "\n\tInvalid graph" ); COMPILE_TIME_ASSERT(is_graph<graph_type>::value); using namespace graph_helpers; using namespace std; typedef typename set_of_sets_of_int::type set_of_int; cliques.clear(); // first we find the node with the most neighbors unsigned long max_index = 0; unsigned long num_neighbors = 0; for (unsigned long i = 0; i < g.number_of_nodes(); ++i) { if (g.node(i).number_of_neighbors() > num_neighbors) { max_index = i; num_neighbors = g.node(i).number_of_neighbors(); } } // now we do a depth first search of the entire graph starting // with the node we just found. We record the order in which // we visit each node in the vector order_visited. std::vector<unsigned long> order_visited; set_of_int visited; search_graph_for_triangulate(g.node(max_index), visited, order_visited); set_of_int clique; // now add edges to the graph to make it triangulated while (visited.size() > 0) { // we are going to enumerate over the nodes in the reverse of the // order in which they were visited. So get the last node out. const unsigned long idx = order_visited.back(); order_visited.pop_back(); visited.destroy(idx); // as a start add this node to our current clique unsigned long temp = idx; clique.clear(); clique.add(temp); // now we want to make a clique that contains node g.node(idx) and // all of its neighbors that are still recorded in the visited set // (except for neighbors that have only one edge). for (unsigned long i = 0; i < g.node(idx).number_of_neighbors(); ++i) { // get the index of the i'th neighbor unsigned long nidx = g.node(idx).neighbor(i).index(); // add it to the clique if it is still in visited and it isn't // a node with only one neighbor if (visited.is_member(nidx) == true && g.node(nidx).number_of_neighbors() != 1) { // add edges between this new node and all the nodes // that are already in the clique clique.reset(); while (clique.move_next()) { if (g.has_edge(nidx, clique.element()) == false) g.add_edge(nidx, clique.element()); } // now also record that we added this node to the clique clique.add(nidx); } } if (cliques.is_member(clique) == false && is_maximal_clique(g,clique) ) { cliques.add(clique); } // now it is possible that we are missing some cliques of size 2 since // above we didn't add nodes with only one edge to any of our cliques. // Now lets make sure all these nodes are accounted for for (unsigned long i = 0; i < g.number_of_nodes(); ++i) { clique.clear(); if (g.node(i).number_of_neighbors() == 1) { unsigned long temp = i; clique.add(temp); temp = g.node(i).neighbor(0).index(); clique.add(temp); if (cliques.is_member(clique) == false) cliques.add(clique); } } } } // ---------------------------------------------------------------------------------------- template < typename graph_type, typename join_tree_type > void create_join_tree ( const graph_type& g, join_tree_type& join_tree ) { // make sure requires clause is not broken DLIB_ASSERT(graph_contains_length_one_cycle(g) == false, "\tvoid create_join_tree(g, join_tree)" << "\n\tInvalid graph" ); DLIB_ASSERT(graph_is_connected(g) == true, "\tvoid create_join_tree(g, join_tree)" << "\n\tInvalid graph" ); COMPILE_TIME_ASSERT(is_graph<graph_type>::value); COMPILE_TIME_ASSERT(is_graph<join_tree_type>::value); typedef typename join_tree_type::type set_of_int; typedef typename join_tree_type::edge_type set_of_int_edge; typedef typename set<set_of_int>::kernel_1b_c set_of_sets_of_int; copy_graph_structure(g, join_tree); // don't even bother in this case if (g.number_of_nodes() == 0) return; set_of_sets_of_int cliques; set_of_int s; triangulate_graph_and_find_cliques(join_tree, cliques); join_tree.set_number_of_nodes(cliques.size()); // copy the cliques into each of the nodes of tree for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i) { cliques.remove_any(s); s.swap(join_tree.node(i).data); } set_of_int_edge e; // add all possible edges to the join_tree for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i) { for (unsigned long j = i+1; j < join_tree.number_of_nodes(); ++j) { set_intersection( join_tree.node(i).data, join_tree.node(j).data, e); if (e.size() > 0) { join_tree.add_edge(i,j); edge(join_tree,i,j).swap(e); } } } // now we just need to remove the unnecessary edges so that we get a // proper join tree s.clear(); set_of_int& good = s; // rename s to something slightly more meaningful // good will contain nodes that have been "approved" unsigned long n = 0; good.add(n); std::vector<unsigned long> vtemp; while (good.size() < join_tree.number_of_nodes()) { // figure out which of the neighbors of nodes in good has the best edge unsigned long best_bad_idx = 0; unsigned long best_good_idx = 0; unsigned long best_overlap = 0; good.reset(); while (good.move_next()) { // loop over all the neighbors of the current node in good for (unsigned long i = 0; i < join_tree.node(good.element()).number_of_neighbors(); ++i) { const unsigned long idx = join_tree.node(good.element()).neighbor(i).index(); if (!good.is_member(idx)) { const unsigned long overlap = join_tree.node(good.element()).edge(i).size(); if (overlap > best_overlap) { best_overlap = overlap; best_bad_idx = idx; best_good_idx = good.element(); } } } } // now remove all the edges from best_bad_idx to the nodes in good except for the // edge to best_good_idx. for (unsigned long i = 0; i < join_tree.node(best_bad_idx).number_of_neighbors(); ++i) { const unsigned long idx = join_tree.node(best_bad_idx).neighbor(i).index(); if (idx != best_good_idx && good.is_member(idx)) { vtemp.push_back(idx); } } for (unsigned long i = 0; i < vtemp.size(); ++i) join_tree.remove_edge(vtemp[i], best_bad_idx); vtemp.clear(); // and finally add this bad index into the good set good.add(best_bad_idx); } } // ---------------------------------------------------------------------------------------- namespace graph_helpers { template < typename T, typename U > bool validate_join_tree ( const T& n, U& deads, unsigned long parent = 0xffffffff ) /*! this function makes sure that a join tree satisfies the following criterion for paths starting at the given node: - for all valid i and j such that i and j are both < #join_tree.number_of_nodes() - let X be the set of numbers that is contained in both #join_tree.node(i).data and #join_tree.node(j).data - It is the case that all nodes on the unique path between #join_tree.node(i) and #join_tree.node(j) contain the numbers from X in their sets. returns true if validation passed and false if there is a problem with the tree !*/ { n.data.reset(); while (n.data.move_next()) { if (deads.is_member(n.data.element())) return false; } for (unsigned long i = 0; i < n.number_of_neighbors(); ++i) { if (n.neighbor(i).index() == parent) continue; // add anything to dead stuff n.data.reset(); while (n.data.move_next()) { if (n.neighbor(i).data.is_member(n.data.element()) == false) { unsigned long temp = n.data.element(); deads.add(temp); } } if (validate_join_tree(n.neighbor(i), deads, n.index()) == false) return false; // remove this nodes stuff from dead stuff n.data.reset(); while (n.data.move_next()) { if (n.neighbor(i).data.is_member(n.data.element()) == false) { unsigned long temp = n.data.element(); deads.destroy(temp); } } } return true; } } template < typename graph_type, typename join_tree_type > bool is_join_tree ( const graph_type& g, const join_tree_type& join_tree ) { // make sure requires clause is not broken DLIB_ASSERT(graph_contains_length_one_cycle(g) == false, "\tvoid create_join_tree(g, join_tree)" << "\n\tInvalid graph" ); DLIB_ASSERT(graph_is_connected(g) == true, "\tvoid create_join_tree(g, join_tree)" << "\n\tInvalid graph" ); COMPILE_TIME_ASSERT(is_graph<graph_type>::value || is_directed_graph<graph_type>::value); COMPILE_TIME_ASSERT(is_graph<join_tree_type>::value); if (graph_contains_undirected_cycle(join_tree)) return false; if (graph_is_connected(join_tree) == false) return false; // verify that the path condition of the join tree is valid for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i) { typename join_tree_type::type deads; if (graph_helpers::validate_join_tree(join_tree.node(i), deads) == false) return false; } typename join_tree_type::edge_type e; typename join_tree_type::edge_type all; // now make sure that the edges contain correct intersections for (unsigned long i = 0; i < join_tree.number_of_nodes(); ++i) { set_union(all,join_tree.node(i).data, all); for (unsigned long j = 0; j < join_tree.node(i).number_of_neighbors(); ++j) { set_intersection(join_tree.node(i).data, join_tree.node(i).neighbor(j).data, e); if (!(e == join_tree.node(i).edge(j))) return false; } } // and finally check that all the nodes in g show up in the join tree if (all.size() != g.number_of_nodes()) return false; all.reset(); while (all.move_next()) { if (all.element() >= g.number_of_nodes()) return false; } return true; } // ---------------------------------------------------------------------------------------- } #endif // DLIB_GRAPH_UTILs_