The decision tree is a powerful tool to discover interaction among independent variables (features). Variables that appear together in a traversal path are interacting with one another, since the condition of a child node is predicated on the condition of the parent node. For example, the highlighted red path in the diagram below contains three variables: \(x_1\), \(x_7\), and \(x_{10}\), so the highlighted prediction (at the highlighted leaf node) is the product of interaction between \(x_1\), \(x_7\), and \(x_{10}\).
When the tree depth is larger than one, many variables interact on the sole basis of minimizing training loss, and the resulting decision tree may capture a spurious relationship (noise) rather than a legitimate relationship that generalizes across different datasets. Feature interaction constraints allow users to decide which variables are allowed to interact and which are not.
Potential benefits include:
Feature interaction constraints are expressed in terms of groups of variables
that are allowed to interact. For example, the constraint
[0, 1]
indicates that variables \(x_0\) and \(x_1\) are allowed to
interact with each other but with no other variable. Similarly, [2, 3, 4]
indicates that \(x_2\), \(x_3\), and \(x_4\) are allowed to
interact with one another but with no other variable. A set of feature
interaction constraints is expressed as a nested list, e.g.
[[0, 1], [2, 3, 4]]
, where each inner list is a group of indices of features
that are allowed to interact with each other.
In the following diagram, the left decision tree is in violation of the first
constraint ([0, 1]
), whereas the right decision tree complies with both the
first and second constraints ([0, 1]
, [2, 3, 4]
).
It is very simple to enforce monotonicity constraints in XGBoost. Here we will give an example using Python, but the same general idea generalizes to other platforms.
Suppose the following code fits your model without monotonicity constraints:
model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)
Then fitting with monotonicity constraints only requires adding a single parameter:
params_constrained = params.copy()
# Use nested list to define feature interaction constraints
params_constrained['interaction_constraints'] = '[[0, 2], [1, 3, 4], [5, 6]]'
# Features 0 and 2 are allowed to interact with each other but with no other feature
# Features 1, 3, 4 are allowed to interact with one another but with no other feature
# Features 5 and 6 are allowed to interact with each other but with no other feature
model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)
Choice of tree construction algorithm. To use feature interaction
constraints, be sure to set the tree_method
parameter to either exact
or hist
. Currently, GPU algorithms (gpu_hist
, gpu_exact
) do not
support feature interaction constraints.