exposure
¶skimage.exposure.adjust_gamma (image[, …]) |
Performs Gamma Correction on the input image. |
skimage.exposure.adjust_log (image[, gain, inv]) |
Performs Logarithmic correction on the input image. |
skimage.exposure.adjust_sigmoid (image[, …]) |
Performs Sigmoid Correction on the input image. |
skimage.exposure.cumulative_distribution (image) |
Return cumulative distribution function (cdf) for the given image. |
skimage.exposure.equalize_adapthist (image[, …]) |
Contrast Limited Adaptive Histogram Equalization (CLAHE). |
skimage.exposure.equalize_hist (image[, …]) |
Return image after histogram equalization. |
skimage.exposure.histogram (image[, nbins]) |
Return histogram of image. |
skimage.exposure.is_low_contrast (image[, …]) |
Detemine if an image is low contrast. |
skimage.exposure.rescale_intensity (image[, …]) |
Return image after stretching or shrinking its intensity levels. |
skimage.exposure.exposure |
skimage.exposure.
adjust_gamma
(image, gamma=1, gain=1)[source]¶Performs Gamma Correction on the input image.
Also known as Power Law Transform.
This function transforms the input image pixelwise according to the
equation O = I**gamma
after scaling each pixel to the range 0 to 1.
Parameters: | image : ndarray
gamma : float
gain : float
|
---|---|
Returns: | out : ndarray
|
See also
Notes
For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image.
For gamma less than 1, the histogram will shift towards right and the output image will be brighter than the input image.
References
[R227227] | http://en.wikipedia.org/wiki/Gamma_correction |
Examples
>>> from skimage import data, exposure, img_as_float
>>> image = img_as_float(data.moon())
>>> gamma_corrected = exposure.adjust_gamma(image, 2)
>>> # Output is darker for gamma > 1
>>> image.mean() > gamma_corrected.mean()
True
skimage.exposure.
adjust_log
(image, gain=1, inv=False)[source]¶Performs Logarithmic correction on the input image.
This function transforms the input image pixelwise according to the
equation O = gain*log(1 + I)
after scaling each pixel to the range 0 to 1.
For inverse logarithmic correction, the equation is O = gain*(2**I - 1)
.
Parameters: | image : ndarray
gain : float
inv : float
|
---|---|
Returns: | out : ndarray
|
See also
References
[R229229] | http://www.ece.ucsb.edu/Faculty/Manjunath/courses/ece178W03/EnhancePart1.pdf |
skimage.exposure.
adjust_sigmoid
(image, cutoff=0.5, gain=10, inv=False)[source]¶Performs Sigmoid Correction on the input image.
Also known as Contrast Adjustment.
This function transforms the input image pixelwise according to the
equation O = 1/(1 + exp*(gain*(cutoff - I)))
after scaling each pixel
to the range 0 to 1.
Parameters: | image : ndarray
cutoff : float
gain : float
inv : bool
|
---|---|
Returns: | out : ndarray
|
See also
References
[R231231] | Gustav J. Braun, “Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions”, http://www.cis.rit.edu/fairchild/PDFs/PAP07.pdf |
skimage.exposure.
cumulative_distribution
(image, nbins=256)[source]¶Return cumulative distribution function (cdf) for the given image.
Parameters: | image : array
nbins : int
|
---|---|
Returns: | img_cdf : array
bin_centers : array
|
See also
References
[R233233] | http://en.wikipedia.org/wiki/Cumulative_distribution_function |
Examples
>>> from skimage import data, exposure, img_as_float
>>> image = img_as_float(data.camera())
>>> hi = exposure.histogram(image)
>>> cdf = exposure.cumulative_distribution(image)
>>> np.alltrue(cdf[0] == np.cumsum(hi[0])/float(image.size))
True
skimage.exposure.
equalize_adapthist
(image, kernel_size=None, clip_limit=0.01, nbins=256, **kwargs)[source]¶Contrast Limited Adaptive Histogram Equalization (CLAHE).
An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image.
Parameters: | image : (M, N[, C]) ndarray
kernel_size: integer or list-like, optional
clip_limit : float, optional
nbins : int, optional
|
---|---|
Returns: | out : (M, N[, C]) ndarray
|
See also
Notes
References
[R235236] | http://tog.acm.org/resources/GraphicsGems/ |
[R236236] | https://en.wikipedia.org/wiki/CLAHE#CLAHE |
skimage.exposure.
equalize_hist
(image, nbins=256, mask=None)[source]¶Return image after histogram equalization.
Parameters: | image : array
nbins : int, optional
mask: ndarray of bools or 0s and 1s, optional
|
---|---|
Returns: | out : float array
|
Notes
This function is adapted from [R239240] with the author’s permission.
References
[R239240] | (1, 2) http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html |
[R240240] | http://en.wikipedia.org/wiki/Histogram_equalization |
skimage.exposure.
histogram
(image, nbins=256)[source]¶Return histogram of image.
Unlike numpy.histogram, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution.
The histogram is computed on the flattened image: for color images, the function should be used separately on each channel to obtain a histogram for each color channel.
Parameters: | image : array
nbins : int
|
---|---|
Returns: | hist : array
bin_centers : array
|
See also
Examples
>>> from skimage import data, exposure, img_as_float
>>> image = img_as_float(data.camera())
>>> np.histogram(image, bins=2)
(array([107432, 154712]), array([ 0. , 0.5, 1. ]))
>>> exposure.histogram(image, nbins=2)
(array([107432, 154712]), array([ 0.25, 0.75]))
skimage.exposure.
is_low_contrast
(image, fraction_threshold=0.05, lower_percentile=1, upper_percentile=99, method='linear')[source]¶Detemine if an image is low contrast.
Parameters: | image : array-like
fraction_threshold : float, optional
lower_bound : float, optional
upper_bound : float, optional
method : str, optional
|
---|---|
Returns: | out : bool
|
References
[R243243] | (1, 2) http://scikit-image.org/docs/dev/user_guide/data_types.html |
Examples
>>> image = np.linspace(0, 0.04, 100)
>>> is_low_contrast(image)
True
>>> image[-1] = 1
>>> is_low_contrast(image)
True
>>> is_low_contrast(image, upper_percentile=100)
False
skimage.exposure.
rescale_intensity
(image, in_range='image', out_range='dtype')[source]¶Return image after stretching or shrinking its intensity levels.
The desired intensity range of the input and output, in_range and out_range respectively, are used to stretch or shrink the intensity range of the input image. See examples below.
Parameters: | image : array
in_range, out_range : str or 2-tuple
|
---|---|
Returns: | out : array
|
See also
Examples
By default, the min/max intensities of the input image are stretched to the limits allowed by the image’s dtype, since in_range defaults to ‘image’ and out_range defaults to ‘dtype’:
>>> image = np.array([51, 102, 153], dtype=np.uint8)
>>> rescale_intensity(image)
array([ 0, 127, 255], dtype=uint8)
It’s easy to accidentally convert an image dtype from uint8 to float:
>>> 1.0 * image
array([ 51., 102., 153.])
Use rescale_intensity to rescale to the proper range for float dtypes:
>>> image_float = 1.0 * image
>>> rescale_intensity(image_float)
array([ 0. , 0.5, 1. ])
To maintain the low contrast of the original, use the in_range parameter:
>>> rescale_intensity(image_float, in_range=(0, 255))
array([ 0.2, 0.4, 0.6])
If the min/max value of in_range is more/less than the min/max image intensity, then the intensity levels are clipped:
>>> rescale_intensity(image_float, in_range=(0, 102))
array([ 0.5, 1. , 1. ])
If you have an image with signed integers but want to rescale the image to just the positive range, use the out_range parameter:
>>> image = np.array([-10, 0, 10], dtype=np.int8)
>>> rescale_intensity(image, out_range=(0, 127))
array([ 0, 63, 127], dtype=int8)