pandas.DataFrame.duplicated

DataFrame.duplicated(self, subset: Union[Hashable, Sequence[Hashable], NoneType] = None, keep: Union[str, bool] = 'first') → 'Series'[source]

Return boolean Series denoting duplicate rows.

Considering certain columns is optional.

Parameters
subsetcolumn label or sequence of labels, optional

Only consider certain columns for identifying duplicates, by default use all of the columns.

keep{‘first’, ‘last’, False}, default ‘first’

Determines which duplicates (if any) to mark.

  • first : Mark duplicates as True except for the first occurrence.

  • last : Mark duplicates as True except for the last occurrence.

  • False : Mark all duplicates as True.

Returns
Series

Boolean series for each duplicated rows.

See also

Index.duplicated

Equivalent method on index.

Series.duplicated

Equivalent method on Series.

Series.drop_duplicates

Remove duplicate values from Series.

DataFrame.drop_duplicates

Remove duplicate values from DataFrame.

Examples

Consider dataset containing ramen rating.

>>> df = pd.DataFrame({
...     'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
...     'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
...     'rating': [4, 4, 3.5, 15, 5]
... })
>>> df
    brand style  rating
0  Yum Yum   cup     4.0
1  Yum Yum   cup     4.0
2  Indomie   cup     3.5
3  Indomie  pack    15.0
4  Indomie  pack     5.0

By default, for each set of duplicated values, the first occurrence is set on False and all others on True.

>>> df.duplicated()
0    False
1     True
2    False
3    False
4    False
dtype: bool

By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True.

>>> df.duplicated(keep='last')
0     True
1    False
2    False
3    False
4    False
dtype: bool

By setting keep on False, all duplicates are True.

>>> df.duplicated(keep=False)
0     True
1     True
2    False
3    False
4    False
dtype: bool

To find duplicates on specific column(s), use subset.

>>> df.duplicated(subset=['brand'])
0    False
1     True
2    False
3     True
4     True
dtype: bool