numpy.empty¶
- numpy.empty(shape, dtype=float, order='C')¶
Return a new array of given shape and type, without initializing entries.
Parameters: shape : int or tuple of int
Shape of the empty array
dtype : data-type, optional
Desired output data-type.
order : {‘C’, ‘F’}, optional
Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.
Returns: out : ndarray
Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays will be initialized to None.
See also
Notes
empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution.
Examples
>>> np.empty([2, 2]) array([[ -9.74499359e+001, 6.69583040e-309], [ 2.13182611e-314, 3.06959433e-309]]) #random
>>> np.empty([2, 2], dtype=int) array([[-1073741821, -1067949133], [ 496041986, 19249760]]) #random