 
    
  
      
    matplotlib.scale¶matplotlib.scale.InvertedLog10Transform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
str(transform) when DEBUG=True.base = 10.0¶inverted()¶matplotlib.scale.InvertedLog2Transform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
str(transform) when DEBUG=True.base = 2.0¶inverted()¶matplotlib.scale.InvertedLogTransform(base)¶Bases: matplotlib.scale.InvertedLogTransformBase
inverted()¶matplotlib.scale.InvertedLogTransformBase(shorthand_name=None)¶Bases: matplotlib.transforms.Transform
Creates a new TransformNode.
str(transform) when DEBUG=True.has_inverse = True¶input_dims = 1¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶matplotlib.scale.InvertedNaturalLogTransform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
str(transform) when DEBUG=True.base = 2.718281828459045¶inverted()¶matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶matplotlib.scale.LinearScale(axis, **kwargs)¶Bases: matplotlib.scale.ScaleBase
The default linear scale.
get_transform()¶The transform for linear scaling is just the
IdentityTransform.
name = 'linear'¶set_default_locators_and_formatters(axis)¶Set the locators and formatters to reasonable defaults for linear scaling.
matplotlib.scale.Log10Transform(nonpos)¶Bases: matplotlib.scale.LogTransformBase
base = 10.0¶inverted()¶matplotlib.scale.Log2Transform(nonpos)¶Bases: matplotlib.scale.LogTransformBase
base = 2.0¶inverted()¶matplotlib.scale.LogScale(axis, **kwargs)¶Bases: matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken so non-positive values are not plotted.
For computational efficiency (to push as much as possible to Numpy C code in the common cases), this scale provides different transforms depending on the base of the logarithm:
- base 10 (
Log10Transform)- base 2 (
Log2Transform)- base e (
NaturalLogTransform)- arbitrary base (
LogTransform)
Where to place the subticks between each major tick.
Should be a sequence of integers.  For example, in a log10
scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
InvertedLog10Transform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
str(transform) when DEBUG=True.base = 10.0¶inverted()¶LogScale.InvertedLog2Transform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
str(transform) when DEBUG=True.base = 2.0¶inverted()¶LogScale.InvertedLogTransform(base)¶Bases: matplotlib.scale.InvertedLogTransformBase
inverted()¶LogScale.InvertedNaturalLogTransform(shorthand_name=None)¶Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
str(transform) when DEBUG=True.base = 2.718281828459045¶inverted()¶LogScale.Log10Transform(nonpos)¶Bases: matplotlib.scale.LogTransformBase
base = 10.0¶inverted()¶LogScale.Log2Transform(nonpos)¶Bases: matplotlib.scale.LogTransformBase
base = 2.0¶inverted()¶LogScale.LogTransform(base, nonpos)¶Bases: matplotlib.scale.LogTransformBase
inverted()¶LogScale.LogTransformBase(nonpos)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶LogScale.NaturalLogTransform(nonpos)¶Bases: matplotlib.scale.LogTransformBase
base = 2.718281828459045¶inverted()¶LogScale.limit_range_for_scale(vmin, vmax, minpos)¶Limit the domain to positive values.
LogScale.name = 'log'¶LogScale.set_default_locators_and_formatters(axis)¶Set the locators and formatters to specialized versions for log scaling.
matplotlib.scale.LogTransform(base, nonpos)¶Bases: matplotlib.scale.LogTransformBase
inverted()¶matplotlib.scale.LogTransformBase(nonpos)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶matplotlib.scale.LogisticTransform(nonpos='mask')¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶logistic transform (base 10)
matplotlib.scale.LogitScale(axis, nonpos='mask')¶Bases: matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
get_transform()¶Return a LogitTransform instance.
limit_range_for_scale(vmin, vmax, minpos)¶Limit the domain to values between 0 and 1 (excluded).
name = 'logit'¶set_default_locators_and_formatters(axis)¶matplotlib.scale.LogitTransform(nonpos)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶logit transform (base 10), masked or clipped
matplotlib.scale.NaturalLogTransform(nonpos)¶Bases: matplotlib.scale.LogTransformBase
base = 2.718281828459045¶inverted()¶matplotlib.scale.ScaleBase¶Bases: object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
limit_range_for_scale(vmin, vmax, minpos)¶Returns the range vmin, vmax, possibly limited to the domain supported by this scale.
matplotlib.scale.SymmetricalLogScale(axis, **kwargs)¶Bases: matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Where to place the subticks between each major tick.
Should be a sequence of integers.  For example, in a log10
scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
InvertedSymmetricalLogTransform(base, linthresh, linscale)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶SymmetricalLogScale.SymmetricalLogTransform(base, linthresh, linscale)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶SymmetricalLogScale.get_transform()¶Return a SymmetricalLogTransform instance.
SymmetricalLogScale.name = 'symlog'¶SymmetricalLogScale.set_default_locators_and_formatters(axis)¶Set the locators and formatters to specialized versions for symmetrical log scaling.
matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)¶Bases: matplotlib.transforms.Transform
has_inverse = True¶input_dims = 1¶inverted()¶is_separable = True¶output_dims = 1¶transform_non_affine(a)¶matplotlib.scale.get_scale_docs()¶Helper function for generating docstrings related to scales.
matplotlib.scale.get_scale_names()¶matplotlib.scale.register_scale(scale_class)¶Register a new kind of scale.
scale_class must be a subclass of ScaleBase.
matplotlib.scale.scale_factory(scale, axis, **kwargs)¶Return a scale class by name.
ACCEPTS: [ linear | log | logit | symlog ]