Source code for lightgbm.engine

# coding: utf-8
# pylint: disable = invalid-name, W0105
"""Library with training routines of LightGBM."""
from __future__ import absolute_import

import collections
import copy
import warnings
from operator import attrgetter

import numpy as np

from . import callback
from .basic import Booster, Dataset, LightGBMError, _InnerPredictor
from .compat import (SKLEARN_INSTALLED, _LGBMGroupKFold, _LGBMStratifiedKFold,
                     string_type, integer_types, range_, zip_)


[docs]def train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, keep_training_booster=False, callbacks=None): """Perform the training with given parameters. Parameters ---------- params : dict Parameters for training. train_set : Dataset Data to be trained on. num_boost_round : int, optional (default=100) Number of boosting iterations. valid_sets : list of Datasets or None, optional (default=None) List of data to be evaluated on during training. valid_names : list of strings or None, optional (default=None) Names of ``valid_sets``. fobj : callable or None, optional (default=None) Customized objective function. feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, train_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. To ignore the default metric corresponding to the used objective, set the ``metric`` parameter to the string ``"None"`` in ``params``. init_model : string, Booster or None, optional (default=None) Filename of LightGBM model or Booster instance used for continue training. feature_name : list of strings or 'auto', optional (default="auto") Feature names. If 'auto' and data is pandas DataFrame, data columns names are used. categorical_feature : list of strings or int, or 'auto', optional (default="auto") Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify ``feature_name`` as well). If 'auto' and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). Large values could be memory consuming. Consider using consecutive integers starting from zero. All negative values in categorical features will be treated as missing values. early_stopping_rounds : int or None, optional (default=None) Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every ``early_stopping_rounds`` round(s) to continue training. Requires at least one validation data and one metric. If there's more than one, will check all of them. But the training data is ignored anyway. The index of iteration that has the best performance will be saved in the ``best_iteration`` field if early stopping logic is enabled by setting ``early_stopping_rounds``. evals_result: dict or None, optional (default=None) This dictionary used to store all evaluation results of all the items in ``valid_sets``. Example ------- With a ``valid_sets`` = [valid_set, train_set], ``valid_names`` = ['eval', 'train'] and a ``params`` = {'metric': 'logloss'} returns {'train': {'logloss': ['0.48253', '0.35953', ...]}, 'eval': {'logloss': ['0.480385', '0.357756', ...]}}. verbose_eval : bool or int, optional (default=True) Requires at least one validation data. If True, the eval metric on the valid set is printed at each boosting stage. If int, the eval metric on the valid set is printed at every ``verbose_eval`` boosting stage. The last boosting stage or the boosting stage found by using ``early_stopping_rounds`` is also printed. Example ------- With ``verbose_eval`` = 4 and at least one item in ``valid_sets``, an evaluation metric is printed every 4 (instead of 1) boosting stages. learning_rates : list, callable or None, optional (default=None) List of learning rates for each boosting round or a customized function that calculates ``learning_rate`` in terms of current number of round (e.g. yields learning rate decay). keep_training_booster : bool, optional (default=False) Whether the returned Booster will be used to keep training. If False, the returned value will be converted into _InnerPredictor before returning. You can still use _InnerPredictor as ``init_model`` for future continue training. callbacks : list of callables or None, optional (default=None) List of callback functions that are applied at each iteration. See Callbacks in Python API for more information. Returns ------- booster : Booster The trained Booster model. """ # create predictor first params = copy.deepcopy(params) for alias in ["num_iterations", "num_iteration", "n_iter", "num_tree", "num_trees", "num_round", "num_rounds", "num_boost_round", "n_estimators"]: if alias in params: num_boost_round = int(params.pop(alias)) warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias)) break for alias in ["early_stopping_round", "early_stopping_rounds", "early_stopping"]: if alias in params and params[alias] is not None: early_stopping_rounds = int(params.pop(alias)) warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias)) break if num_boost_round <= 0: raise ValueError("num_boost_round should be greater than zero.") if isinstance(init_model, string_type): predictor = _InnerPredictor(model_file=init_model, pred_parameter=params) elif isinstance(init_model, Booster): predictor = init_model._to_predictor(dict(init_model.params, **params)) else: predictor = None init_iteration = predictor.num_total_iteration if predictor is not None else 0 # check dataset if not isinstance(train_set, Dataset): raise TypeError("Training only accepts Dataset object") train_set._update_params(params) \ ._set_predictor(predictor) \ .set_feature_name(feature_name) \ .set_categorical_feature(categorical_feature) is_valid_contain_train = False train_data_name = "training" reduced_valid_sets = [] name_valid_sets = [] if valid_sets is not None: if isinstance(valid_sets, Dataset): valid_sets = [valid_sets] if isinstance(valid_names, string_type): valid_names = [valid_names] for i, valid_data in enumerate(valid_sets): # reduce cost for prediction training data if valid_data is train_set: is_valid_contain_train = True if valid_names is not None: train_data_name = valid_names[i] continue if not isinstance(valid_data, Dataset): raise TypeError("Traninig only accepts Dataset object") reduced_valid_sets.append(valid_data._update_params(params).set_reference(train_set)) if valid_names is not None and len(valid_names) > i: name_valid_sets.append(valid_names[i]) else: name_valid_sets.append('valid_' + str(i)) # process callbacks if callbacks is None: callbacks = set() else: for i, cb in enumerate(callbacks): cb.__dict__.setdefault('order', i - len(callbacks)) callbacks = set(callbacks) # Most of legacy advanced options becomes callbacks if verbose_eval is True: callbacks.add(callback.print_evaluation()) elif isinstance(verbose_eval, integer_types): callbacks.add(callback.print_evaluation(verbose_eval)) if early_stopping_rounds is not None: callbacks.add(callback.early_stopping(early_stopping_rounds, verbose=bool(verbose_eval))) if learning_rates is not None: callbacks.add(callback.reset_parameter(learning_rate=learning_rates)) if evals_result is not None: callbacks.add(callback.record_evaluation(evals_result)) callbacks_before_iter = {cb for cb in callbacks if getattr(cb, 'before_iteration', False)} callbacks_after_iter = callbacks - callbacks_before_iter callbacks_before_iter = sorted(callbacks_before_iter, key=attrgetter('order')) callbacks_after_iter = sorted(callbacks_after_iter, key=attrgetter('order')) # construct booster try: booster = Booster(params=params, train_set=train_set) if is_valid_contain_train: booster.set_train_data_name(train_data_name) for valid_set, name_valid_set in zip_(reduced_valid_sets, name_valid_sets): booster.add_valid(valid_set, name_valid_set) finally: train_set._reverse_update_params() for valid_set in reduced_valid_sets: valid_set._reverse_update_params() booster.best_iteration = 0 # start training for i in range_(init_iteration, init_iteration + num_boost_round): for cb in callbacks_before_iter: cb(callback.CallbackEnv(model=booster, params=params, iteration=i, begin_iteration=init_iteration, end_iteration=init_iteration + num_boost_round, evaluation_result_list=None)) booster.update(fobj=fobj) evaluation_result_list = [] # check evaluation result. if valid_sets is not None: if is_valid_contain_train: evaluation_result_list.extend(booster.eval_train(feval)) evaluation_result_list.extend(booster.eval_valid(feval)) try: for cb in callbacks_after_iter: cb(callback.CallbackEnv(model=booster, params=params, iteration=i, begin_iteration=init_iteration, end_iteration=init_iteration + num_boost_round, evaluation_result_list=evaluation_result_list)) except callback.EarlyStopException as earlyStopException: booster.best_iteration = earlyStopException.best_iteration + 1 evaluation_result_list = earlyStopException.best_score break booster.best_score = collections.defaultdict(dict) for dataset_name, eval_name, score, _ in evaluation_result_list: booster.best_score[dataset_name][eval_name] = score if not keep_training_booster: booster.model_from_string(booster.model_to_string(), False).free_dataset() return booster
class _CVBooster(object): """Auxiliary data struct to hold all boosters of CV.""" def __init__(self): self.boosters = [] self.best_iteration = -1 def append(self, booster): """Add a booster to _CVBooster.""" self.boosters.append(booster) def __getattr__(self, name): """Redirect methods call of _CVBooster.""" def handler_function(*args, **kwargs): """Call methods with each booster, and concatenate their results.""" ret = [] for booster in self.boosters: ret.append(getattr(booster, name)(*args, **kwargs)) return ret return handler_function def _make_n_folds(full_data, folds, nfold, params, seed, fpreproc=None, stratified=True, shuffle=True): """Make a n-fold list of Booster from random indices.""" full_data = full_data.construct() num_data = full_data.num_data() if folds is not None: if not hasattr(folds, '__iter__') and not hasattr(folds, 'split'): raise AttributeError("folds should be a generator or iterator of (train_idx, test_idx) tuples " "or scikit-learn splitter object with split method") if hasattr(folds, 'split'): group_info = full_data.get_group() if group_info is not None: group_info = group_info.astype(int) flatted_group = np.repeat(range_(len(group_info)), repeats=group_info) else: flatted_group = np.zeros(num_data, dtype=int) folds = folds.split(X=np.zeros(num_data), y=full_data.get_label(), groups=flatted_group) else: if 'objective' in params and params['objective'] == 'lambdarank': if not SKLEARN_INSTALLED: raise LightGBMError('Scikit-learn is required for lambdarank cv.') # lambdarank task, split according to groups group_info = full_data.get_group().astype(int) flatted_group = np.repeat(range_(len(group_info)), repeats=group_info) group_kfold = _LGBMGroupKFold(n_splits=nfold) folds = group_kfold.split(X=np.zeros(num_data), groups=flatted_group) elif stratified: if not SKLEARN_INSTALLED: raise LightGBMError('Scikit-learn is required for stratified cv.') skf = _LGBMStratifiedKFold(n_splits=nfold, shuffle=shuffle, random_state=seed) folds = skf.split(X=np.zeros(num_data), y=full_data.get_label()) else: if shuffle: randidx = np.random.RandomState(seed).permutation(num_data) else: randidx = np.arange(num_data) kstep = int(num_data / nfold) test_id = [randidx[i: i + kstep] for i in range_(0, num_data, kstep)] train_id = [np.concatenate([test_id[i] for i in range_(nfold) if k != i]) for k in range_(nfold)] folds = zip_(train_id, test_id) ret = _CVBooster() for train_idx, test_idx in folds: train_set = full_data.subset(train_idx) valid_set = full_data.subset(test_idx) # run preprocessing on the data set if needed if fpreproc is not None: train_set, valid_set, tparam = fpreproc(train_set, valid_set, params.copy()) else: tparam = params cvbooster = Booster(tparam, train_set) cvbooster.add_valid(valid_set, 'valid') ret.append(cvbooster) return ret def _agg_cv_result(raw_results): """Aggregate cross-validation results.""" cvmap = collections.defaultdict(list) metric_type = {} for one_result in raw_results: for one_line in one_result: metric_type[one_line[1]] = one_line[3] cvmap[one_line[1]].append(one_line[2]) return [('cv_agg', k, np.mean(v), metric_type[k], np.std(v)) for k, v in cvmap.items()]
[docs]def cv(params, train_set, num_boost_round=100, folds=None, nfold=5, stratified=True, shuffle=True, metrics=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, fpreproc=None, verbose_eval=None, show_stdv=True, seed=0, callbacks=None): """Perform the cross-validation with given paramaters. Parameters ---------- params : dict Parameters for Booster. train_set : Dataset Data to be trained on. num_boost_round : int, optional (default=100) Number of boosting iterations. folds : generator or iterator of (train_idx, test_idx) tuples, scikit-learn splitter object or None, optional (default=None) If generator or iterator, it should yield the train and test indices for each fold. If object, it should be one of the scikit-learn splitter classes (http://scikit-learn.org/stable/modules/classes.html#splitter-classes) and have ``split`` method. This argument has highest priority over other data split arguments. nfold : int, optional (default=5) Number of folds in CV. stratified : bool, optional (default=True) Whether to perform stratified sampling. shuffle : bool, optional (default=True) Whether to shuffle before splitting data. metrics : string, list of strings or None, optional (default=None) Evaluation metrics to be monitored while CV. If not None, the metric in ``params`` will be overridden. fobj : callable or None, optional (default=None) Custom objective function. feval : callable or None, optional (default=None) Customized evaluation function. Should accept two parameters: preds, train_data, and return (eval_name, eval_result, is_higher_better) or list of such tuples. For multi-class task, the preds is group by class_id first, then group by row_id. If you want to get i-th row preds in j-th class, the access way is preds[j * num_data + i]. To ignore the default metric corresponding to the used objective, set ``metrics`` to the string ``"None"``. init_model : string, Booster or None, optional (default=None) Filename of LightGBM model or Booster instance used for continue training. feature_name : list of strings or 'auto', optional (default="auto") Feature names. If 'auto' and data is pandas DataFrame, data columns names are used. categorical_feature : list of strings or int, or 'auto', optional (default="auto") Categorical features. If list of int, interpreted as indices. If list of strings, interpreted as feature names (need to specify ``feature_name`` as well). If 'auto' and data is pandas DataFrame, pandas categorical columns are used. All values in categorical features should be less than int32 max value (2147483647). Large values could be memory consuming. Consider using consecutive integers starting from zero. All negative values in categorical features will be treated as missing values. early_stopping_rounds : int or None, optional (default=None) Activates early stopping. CV score needs to improve at least every ``early_stopping_rounds`` round(s) to continue. Requires at least one metric. If there's more than one, will check all of them. Last entry in evaluation history is the one from the best iteration. fpreproc : callable or None, optional (default=None) Preprocessing function that takes (dtrain, dtest, params) and returns transformed versions of those. verbose_eval : bool, int, or None, optional (default=None) Whether to display the progress. If None, progress will be displayed when np.ndarray is returned. If True, progress will be displayed at every boosting stage. If int, progress will be displayed at every given ``verbose_eval`` boosting stage. show_stdv : bool, optional (default=True) Whether to display the standard deviation in progress. Results are not affected by this parameter, and always contain std. seed : int, optional (default=0) Seed used to generate the folds (passed to numpy.random.seed). callbacks : list of callables or None, optional (default=None) List of callback functions that are applied at each iteration. See Callbacks in Python API for more information. Returns ------- eval_hist : dict Evaluation history. The dictionary has the following format: {'metric1-mean': [values], 'metric1-stdv': [values], 'metric2-mean': [values], 'metric2-stdv': [values], ...}. """ if not isinstance(train_set, Dataset): raise TypeError("Traninig only accepts Dataset object") params = copy.deepcopy(params) for alias in ["num_iterations", "num_iteration", "n_iter", "num_tree", "num_trees", "num_round", "num_rounds", "num_boost_round", "n_estimators"]: if alias in params: warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias)) num_boost_round = params.pop(alias) break for alias in ["early_stopping_round", "early_stopping_rounds", "early_stopping"]: if alias in params: warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias)) early_stopping_rounds = params.pop(alias) break if num_boost_round <= 0: raise ValueError("num_boost_round should be greater than zero.") if isinstance(init_model, string_type): predictor = _InnerPredictor(model_file=init_model, pred_parameter=params) elif isinstance(init_model, Booster): predictor = init_model._to_predictor(dict(init_model.params, **params)) else: predictor = None train_set._update_params(params) \ ._set_predictor(predictor) \ .set_feature_name(feature_name) \ .set_categorical_feature(categorical_feature) if metrics is not None: params['metric'] = metrics results = collections.defaultdict(list) cvfolds = _make_n_folds(train_set, folds=folds, nfold=nfold, params=params, seed=seed, fpreproc=fpreproc, stratified=stratified, shuffle=shuffle) # setup callbacks if callbacks is None: callbacks = set() else: for i, cb in enumerate(callbacks): cb.__dict__.setdefault('order', i - len(callbacks)) callbacks = set(callbacks) if early_stopping_rounds is not None: callbacks.add(callback.early_stopping(early_stopping_rounds, verbose=False)) if verbose_eval is True: callbacks.add(callback.print_evaluation(show_stdv=show_stdv)) elif isinstance(verbose_eval, integer_types): callbacks.add(callback.print_evaluation(verbose_eval, show_stdv=show_stdv)) callbacks_before_iter = {cb for cb in callbacks if getattr(cb, 'before_iteration', False)} callbacks_after_iter = callbacks - callbacks_before_iter callbacks_before_iter = sorted(callbacks_before_iter, key=attrgetter('order')) callbacks_after_iter = sorted(callbacks_after_iter, key=attrgetter('order')) for i in range_(num_boost_round): for cb in callbacks_before_iter: cb(callback.CallbackEnv(model=cvfolds, params=params, iteration=i, begin_iteration=0, end_iteration=num_boost_round, evaluation_result_list=None)) cvfolds.update(fobj=fobj) res = _agg_cv_result(cvfolds.eval_valid(feval)) for _, key, mean, _, std in res: results[key + '-mean'].append(mean) results[key + '-stdv'].append(std) try: for cb in callbacks_after_iter: cb(callback.CallbackEnv(model=cvfolds, params=params, iteration=i, begin_iteration=0, end_iteration=num_boost_round, evaluation_result_list=res)) except callback.EarlyStopException as earlyStopException: cvfolds.best_iteration = earlyStopException.best_iteration + 1 for k in results: results[k] = results[k][:cvfolds.best_iteration] break return dict(results)